Low Hysteresis Perovskite Solar Cells Using an Electron-Beam Evaporated WO3–x Thin Film as the Electron Transport Layer

2019 ◽  
Vol 2 (8) ◽  
pp. 5456-5464 ◽  
Author(s):  
Fawad Ali ◽  
Ngoc Duy Pham ◽  
Lijuan Fan ◽  
Vincent Tiong ◽  
Ken Ostrikov ◽  
...  
2017 ◽  
Vol 159 ◽  
pp. 251-264 ◽  
Author(s):  
Md Arafat Mahmud ◽  
Naveen Kumar Elumalai ◽  
Mushfika Baishakhi Upama ◽  
Dian Wang ◽  
Kah Howe Chan ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3090
Author(s):  
Jun Choi ◽  
Young Ki Park ◽  
Hee Dong Lee ◽  
Seok Il Hong ◽  
Woosung Lee ◽  
...  

A robust electron transport layer (ETL) is an essential component in planar-heterojunction perovskite solar cells (PSCs). Herein, a sol-gel-driven ZrSnO4 thin film is synthesized and its optoelectronic properties are systematically investigated. The optimized processing conditions for sol-gel synthesis produce a ZrSnO4 thin film that exhibits high optical transmittance in the UV-Vis-NIR range, a suitable conduction band maximum, and good electrical conductivity, revealing its potential for application in the ETL of planar-heterojunction PSCs. Consequently, the ZrSnO4 ETL-based devices deliver promising power conversion efficiency (PCE) up to 19.05% from CH3NH3PbI3-based planar-heterojunction devices. Furthermore, the optimal ZrSnO4 ETL also contributes to decent long-term stability of the non-encapsulated device for 360 h in an ambient atmosphere (T~25 °C, RH~55%,), suggesting great potential of the sol-gel-driven ZrSnO4 thin film for a robust solution-processed ETL material in high-performance PSCs.


RSC Advances ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 884-890 ◽  
Author(s):  
Fengyang Yu ◽  
Wangen Zhao ◽  
Shengzhong (Frank) Liu

A simple, time-saving solution-processed In2S3 thin film was applied in perovskite solar cells as the electron selective layer.


2022 ◽  
Vol 12 (1) ◽  
pp. 429
Author(s):  
Muhazri Abd Mutalib ◽  
Norasikin Ahmad Ludin ◽  
Mohd Sukor Su’ait ◽  
Matthew Davies ◽  
Suhaila Sepeai ◽  
...  

High-performance electron transport layer (ETL) anode generally needs to form a uniform dense layer with suitable conduction band position and good electron transport properties. The TiO2 photoanode is primarily applied as the ETL because it is low-cost, has diverse thin-film preparation methods and has good chemical stability. However, pure TiO2 is not an ideal ETL because it lacks several important criteria, such as low conductivity and conduction band mismatch with compositional-tailored perovskite. Thus, TiO2 is an inefficient photo-anode or ETL for high-performance perovskite devices. In this study, sulfur as dopant in the TiO2 photo-anode thin film is used to fabricate solid-state planar perovskite solar cells in relatively high humidity (40–50%). The deposited S-doped thin film improves the power conversion efficiency (PCE) of the device to 6.0%, with the un-doped TiO2 producing a PCE of 5.1% in the best device. Improvement in PCE is due to lower recombination and higher photocurrent density, resulting in 18% increase in PCE (5.1–6.0%).


2021 ◽  
Author(s):  
Song Fang ◽  
Bo Chen ◽  
Bangkai Gu ◽  
Linxing Meng ◽  
Hao Lu ◽  
...  

UV induced decomposition of perovskite material is one of main factors to severely destroy perovskite solar cells for instability. Here we report a UV stable perovskite solar cell with a...


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3295
Author(s):  
Andrzej Sławek ◽  
Zbigniew Starowicz ◽  
Marek Lipiński

In recent years, lead halide perovskites have attracted considerable attention from the scientific community due to their exceptional properties and fast-growing enhancement for solar energy harvesting efficiency. One of the fundamental aspects of the architecture of perovskite-based solar cells (PSCs) is the electron transport layer (ETL), which also acts as a barrier for holes. In this work, the influence of compact TiO2 ETL on the performance of planar heterojunction solar cells based on CH3NH3PbI3 perovskite was investigated. ETLs were deposited on fluorine-doped tin oxide (FTO) substrates from a titanium diisopropoxide bis(acetylacetonate) precursor solution using the spin-coating method with changing precursor concentration and centrifugation speed. It was found that the thickness and continuity of ETLs, investigated between 0 and 124 nm, strongly affect the photovoltaic performance of PSCs, in particular short-circuit current density (JSC). Optical and topographic properties of the compact TiO2 layers were investigated as well.


Author(s):  
Zhihai Liu ◽  
Lei Wang ◽  
Chongyang Xu ◽  
Xiaoyin Xie

Recently, Ruddlesden–Popper two-dimensional (2D) perovskite solar cells (PSCs) have been intensively studied, owing to their high power conversion efficiency (PCE) and excellent long-term stability. In this work, we fabricated electron-transport-layer-free...


Author(s):  
Zafar Arshad ◽  
Asif Hussain Khoja ◽  
Sehar Shakir ◽  
Asif Afzal ◽  
M.A. Mujtaba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document