Platinum Nanozyme-Triggered Pressure-Based Immunoassay Using a Three-Dimensional Polypyrrole Foam-Based Flexible Pressure Sensor

2020 ◽  
Vol 12 (36) ◽  
pp. 40133-40140 ◽  
Author(s):  
Zhenzhong Yu ◽  
Guoneng Cai ◽  
Xiaolong Liu ◽  
Dianping Tang
Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 824
Author(s):  
Byunggeon Park ◽  
Young Jung ◽  
Jong Soo Ko ◽  
Jinhyoung Park ◽  
Hanchul Cho

Highly flexible and compressible porous polyurethane (PU) structures have effectively been applied in capacitive pressure sensors because of the good elastic properties of the PU structures. However, PU porous structure-based pressure sensors have been limited in practical applications owing to their low durability during pressure cycling. Herein, we report a flexible pressure sensor based on a three-dimensional porous structure with notable durability at a compressive pressure of 500 kPa facilitated by the use of a shape memory polymer (SMP). The SMP porous structure was fabricated using a sugar templating process and capillary effect. The use of the SMP resulted in the maintenance of the sensing performance for 100 cycles at 500 kPa; the SMP can restore its original shape within 30 s of heating at 80 °C. The pressure sensor based on the SMP exhibited a higher sensitivity of 0.0223 kPa−1 than a typical PU-based sensor and displayed excellent sensing performance in terms of stability, response time, and hysteresis. Additionally, the proposed sensor was used to detect shoe insole pressures in real time and exhibited remarkable durability and motion differentiation.


Author(s):  
Roman Grishin ◽  
Dmitriy Nesnov

This article describes the creation of a three-dimensional model of the overpressure sensor Metran-43 using the graphic editor COMPASS-v17, as well as photorealistic images in the program Artisan Rendering and created animation disassembly-Assembly of the device, allowing you to see the internal components of the product.


RSC Advances ◽  
2021 ◽  
Vol 11 (23) ◽  
pp. 13898-13905
Author(s):  
Chuan Cai ◽  
He Gong ◽  
Weiping Li ◽  
Feng Gao ◽  
Qiushi Jiang ◽  
...  

A three-dimensional electrospun carbon nanofiber network was used to measure press strains with high sensitivity.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 569
Author(s):  
Jianzhong Chen ◽  
Ke Sun ◽  
Rong Zheng ◽  
Yi Sun ◽  
Heng Yang ◽  
...  

In this study, we developed a radial artery pulse acquisition system based on finger-worn dense pressure sensor arrays to enable three-dimensional pulse signals acquisition. The finger-worn dense pressure-sensor arrays were fabricated by packaging 18 ultra-small MEMS pressure sensors (0.4 mm × 0.4 mm × 0.2 mm each) with a pitch of 0.65 mm on flexible printed circuit boards. Pulse signals are measured and recorded simultaneously when traditional Chinese medicine practitioners wear the arrays on the fingers while palpating the radial pulse. Given that the pitches are much smaller than the diameter of the human radial artery, three-dimensional pulse envelope images can be measured with the system, as can the width and the dynamic width of the pulse signals. Furthermore, the array has an effective span of 11.6 mm—3–5 times the diameter of the radial artery—which enables easy and accurate positioning of the sensor array on the radial artery. This study also outlines proposed methods for measuring the pulse width and dynamic pulse width. The dynamic pulse widths of three volunteers were measured, and the dynamic pulse width measurements were consistent with those obtained by color Doppler ultrasound. The pulse wave velocity can also be measured with the system by measuring the pulse transit time between the pulse signals at the brachial and radial arteries using the finger-worn sensor arrays.


2021 ◽  
pp. 100889
Author(s):  
Ran Li ◽  
Xiaohan Tian ◽  
Min Wei ◽  
Aijun Dong ◽  
Xi Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document