flexible pressure sensor
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 99)

H-INDEX

24
(FIVE YEARS 6)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7385
Author(s):  
Xingjie Su ◽  
Chunli Luo ◽  
Weiguo Yan ◽  
Junyi Jiao ◽  
Dongzhou Zhong

Resistive pressure sensors are appealing due to having several advantages, such as simple reading mechanisms, simple construction, and quick dynamic response. Achieving a constantly changeable microstructure of sensing materials is critical for the flexible pressure sensor and remains a difficulty. Herein, a flexible, tunable resistive pressure sensors is developed via simple, low-cost microsphere self-assembly and graphene/carbon nanotubes (CNTs) solution drop coating. The sensor uses polystyrene (PS) microspheres to construct an interlocked dome microstructure with graphene/CNTs as a conductive filler. The results indicate that the interlocked microdome-type pressure sensor has better sensitivity than the single microdome-type and single planar-type without surface microstructure. The pressure sensor’s sensitivity can be adjusted by varying the diameter of PS microspheres. In addition, the resistance of the sensor is also tunable by adjusting the number of graphene/CNT conductive coating layers. The developed flexible pressure sensor effectively detected human finger bending, demonstrating tremendous potential in human motion monitoring.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6499
Author(s):  
Yiwei Shao ◽  
Qi Zhang ◽  
Yulong Zhao ◽  
Xing Pang ◽  
Mingjie Liu ◽  
...  

Flexible pressure sensors are widely used in different fields, especially in human motion, robot monitoring and medical treatment. Herein, a flexible pressure sensor consists of the flat top plate, and the microstructured bottom plate is developed. Both plates are made of polydimethylsiloxane (PDMS) by molding from the 3D printed template. The contact surfaces of the top and bottom plates are coated with a mixture of poly (3,4-ethylenedioxythiophene) poly (styrene sulfonate) (PEDOT:PSS) and polyurethane dispersion (PUD) as stretchable film electrodes with carbon nanotubes on the electrode surface. By employing 3D printing technology, using digital light processing (DLP), the fabrication of the sensor is low-cost and fast. The sensor models with different microstructures are first analyzed by the Finite Element Method (FEM), and then the models are fabricated and tested. The sensor with 5 × 5 hemispheres has a sensitivity of 3.54 × 10−3 S/kPa in the range of 0–22.2 kPa. The zero-temperature coefficient is −0.0064%FS/°C. The durability test is carried out for 2000 cycles, and it remains stable during the whole test. This work represents progress in flexible pressure sensing and demonstrates the advantages of 3D printing technology in sensor processing.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7022
Author(s):  
Weibin Wu ◽  
Chongyang Han ◽  
Rongxuan Liang ◽  
Jian Xu ◽  
Bin Li ◽  
...  

Laser-induced graphene (LIG) has been widely used in flexible sensors due to its excellent mechanical properties and high conductivity. In this paper, a flexible pressure sensor prepared by bionic micro/nanostructure design and LIG mass fraction regulation is reported. First, prepared LIG and conductive carbon paste (CCP) solutions were mixed to obtain a conductive polymer. After the taro leaf structure was etched on the surface of the aluminum alloy plate by Nd:YAG laser processing, the conductive polymer was evenly coated on the template. Pressure sensors were packaged with a stencil transfer printing combined with an Ecoflex flexible substrate. Finally, the effects of different laser flux and the proportion of LIG in the composite on the sensitivity of the sensor are discussed. The results show that when the laser flux is 71.66 J·cm−2 and the mass fraction of LIG is 5%, the sensor has the best response characteristics, with a response time and a recovery time of 86 ms and 101 ms, respectively, with a sensitivity of 1.2 kPa−1 over a pressure range of 0–6 kPa, and stability of 650 cycle tests. The LIG/CCP sensor with a bionic structure demonstrates its potential in wearable devices.


2021 ◽  
pp. 2108856
Author(s):  
Dandan Lei ◽  
Qixiang Zhang ◽  
Nishuang Liu ◽  
Tuoyi Su ◽  
Luoxin Wang ◽  
...  

2021 ◽  
pp. 131151
Author(s):  
Xiao Lei ◽  
Lijun Ma ◽  
Yunfan Li ◽  
Yuyang Cheng ◽  
Gary J. Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document