Molecular Orientation Control of Liquid Crystal Organic Semiconductor for High-Performance Organic Field-Effect Transistors

2021 ◽  
Vol 13 (9) ◽  
pp. 11125-11133
Author(s):  
Moon Jong Han ◽  
Don-Wook Lee ◽  
Eun Kyung Lee ◽  
Joo-Young Kim ◽  
Ji Young Jung ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1583 ◽  
Author(s):  
Damien Thuau ◽  
Katherine Begley ◽  
Rishat Dilmurat ◽  
Abduleziz Ablat ◽  
Guillaume Wantz ◽  
...  

Organic semiconductors (OSCs) are promising transducer materials when applied in organic field-effect transistors (OFETs) taking advantage of their electrical properties which highly depend on the morphology of the semiconducting film. In this work, the effects of OSC thickness (ranging from 5 to 15 nm) on the piezoresistive sensitivity of a high-performance p-type organic semiconductor, namely dinaphtho [2,3-b:2,3-f] thieno [3,2–b] thiophene (DNTT), were investigated. Critical thickness of 6 nm thin film DNTT, thickness corresponding to the appearance of charge carrier percolation paths in the material, was demonstrated to be highly sensitive to mechanical strain. Gauge factors (GFs) of 42 ± 5 and −31 ± 6 were measured from the variation of output currents of 6 nm thick DNTT-based OFETs engineered on top of polymer cantilevers in response to compressive and tensile strain, respectively. The relationship between the morphologies of the different thin films and their corresponding piezoresistive sensitivities was discussed.


Author(s):  
Chaoqiang Wang ◽  
Zhengjun Lu ◽  
Wei Deng ◽  
Wanqin Zhao ◽  
Bei Lu ◽  
...  

Control over the growth location and orientation of organic semiconductor single crystals (OSSCs) is of key importance to enable high-performance organic circuits. However, the previous approaches are difficult to create...


Sign in / Sign up

Export Citation Format

Share Document