Multi-Synergistic Removal of Low-Boiling-Point Contaminants with Efficient Carbon Aerogel-Based Solar Purifier

Author(s):  
Zhongming Huang ◽  
Yingpeng Wan ◽  
Jianli Liang ◽  
Yafang Xiao ◽  
Xiaozhen Li ◽  
...  
Keyword(s):  





Author(s):  
M.A. Nisbet ◽  
S. Schmeller

AbstractBoth the vapour and particulate phases of tobacco smoke have been shown to retard benzoyI-peroxide-initiated polymerisation of vinyl acetate by interception of the radicals involved in the polymerisation process. The extent of inhibition of polymerisation by test compounds is estimated by measuring time taken for a mixture of monomer and benzoyl peroxide, immersed in a water-bath at 70°C, to reach a spontaneous boil and comparing it with the time required for a similar mixture with added retarder to reach boiling point. Units are expressed as minutes of inhibition per part per million of inhibitor × 10





Alloy Digest ◽  
1956 ◽  
Vol 5 (11) ◽  

Abstract HASTELLOY ALLOY-D is a cast alloy composed primarily of nickel and silicon, and is exceptionally resistant to sulfuric acid of all concentrations even up to the boiling point. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-29. Producer or source: Haynes Stellite Company.



1983 ◽  
Vol 48 (9) ◽  
pp. 2446-2453 ◽  
Author(s):  
Jan Linek

Isothermal vapour-liquid equilibrium data at 65, 73 and 80 °C and isobaric ones at 101.3 kPa were measured in the tetrachloromethane-sec-butyl alcohol system. A modified circulation still of the Gillespie type was used for the measurements. Under the conditions of measurement, the system exhibits positive deviations from Raoult's law and minimum boiling-point azeotropes. The experimental data were fitted to a number of correlation equations, the most suitable being the Wilson equation.



2004 ◽  
Vol 347 (1-3) ◽  
pp. 238-245 ◽  
Author(s):  
Sung-Woo Hwang ◽  
Sang-Hoon Hyun
Keyword(s):  


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Leela Goel ◽  
Huaiyu Wu ◽  
Bohua Zhang ◽  
Jinwook Kim ◽  
Paul A. Dayton ◽  
...  

AbstractOne major challenge in current microbubble (MB) and tissue plasminogen activator (tPA)-mediated sonothrombolysis techniques is effectively treating retracted blood clots, owing to the high density and low porosity of retracted clots. Nanodroplets (NDs) have the potential to enhance retracted clot lysis owing to their small size and ability to penetrate into retracted clots to enhance drug delivery. For the first time, we demonstrate that a sub-megahertz, forward-viewing intravascular (FVI) transducer can be used for ND-mediated sonothrombolysis, in vitro. In this study, we determined the minimum peak negative pressure to induce cavitation with low-boiling point phase change nanodroplets and clot lysis. We then compared nanodroplet mediated sonothrombolysis to MB and tPA mediate techniques. The clot lysis as a percent mass decrease in retracted clots was 9 ± 8%, 9 ± 5%, 16 ± 5%, 14 ± 9%, 17 ± 9%, 30 ± 8%, and 40 ± 9% for the control group, tPA alone, tPA + US, MB + US, MB + tPA + US, ND + US, and ND + tPA + US groups, respectively. In retracted blood clots, combined ND- and tPA-mediated sonothrombolysis was able to significantly enhance retracted clot lysis compared with traditional MB and tPA-mediated sonothrombolysis techniques. Combined nanodroplet with tPA-mediated sonothrombolysis may provide a feasible strategy for safely treating retracted clots.



Sign in / Sign up

Export Citation Format

Share Document