Multifunctional Self-Powered Electronics Based on a Reusable Low-Cost Polypropylene Fabric Triboelectric Nanogenerator

Author(s):  
Daozhi Shen ◽  
Ming Xiao ◽  
Xiaoye Zhao ◽  
Yu Xiao ◽  
Walter W. Duley ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4119
Author(s):  
Chaoyu Chen ◽  
Lei Zhang ◽  
Wenbo Ding ◽  
Lijun Chen ◽  
Jinkang Liu ◽  
...  

In recent years, rapid advancements have developed in multifunctional and wearable electronics, which call for more lightweight, flexible energy sources. However, traditional disposable batteries and rechargeable batteries are not very suitable because of their bulky appearance, limited capacity, low flexibility, and environmental pollution problem. Here, by applying a mature manufacturing technology that has existed in the textile field for a long time, a woven fabric triboelectric nanogenerator (WF-TENG) with a thinner structure that can be mass-fabricated with low cost, perfect stability, and high flexibility is designed and reported. Due to the good intrinsic quality of TENGs, the maximum voltage of this WF-TENG can easily reach 250 V under a pressure of 3.5 kPa and a tapping frequency of 0.33 Hz. Because of the stable plain-woven structure, the output voltage can remain relatively stable even after the WF-TENG has been working for about 5 h continuously, clearly demonstrating its robustness and practical value. Moreover, good sensitivity endows this WF-TENG with the capability of being applied as self-powered sensors, such as a self-powered smart real-time gait-recognizing sock. This WF-TENG shows us a simple and effective method to fabricate a wearable textile product with functional ability, which is very meaningful for future research.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Lokesh Dhakar ◽  
Sudeep Gudla ◽  
Xuechuan Shan ◽  
Zhiping Wang ◽  
Francis Eng Hock Tay ◽  
...  

Nano Energy ◽  
2021 ◽  
Vol 84 ◽  
pp. 105887
Author(s):  
Yuankai Zhou ◽  
Maoliang Shen ◽  
Xin Cui ◽  
Yicheng Shao ◽  
Lijie Li ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mengxiao Chen ◽  
Zhe Wang ◽  
Qichong Zhang ◽  
Zhixun Wang ◽  
Wei Liu ◽  
...  

AbstractThe well-developed preform-to-fiber thermal drawing technique owns the benefit to maintain the cross-section architecture and obtain an individual micro-scale strand of fiber with the extended length up to thousand meters. In this work, we propose and demonstrate a two-step soluble-core fabrication method by combining such an inherently scalable manufacturing method with simple post-draw processing to explore the low viscosity polymer fibers and the potential of soft fiber electronics. As a result, an ultra-stretchable conductive fiber is achieved, which maintains excellent conductivity even under 1900% strain or 1.5 kg load/impact freefalling from 0.8-m height. Moreover, by combining with triboelectric nanogenerator technique, this fiber acts as a self-powered self-adapting multi-dimensional sensor attached on sports gears to monitor sports performance while bearing sudden impacts. Next, owing to its remarkable waterproof and easy packaging properties, this fiber detector can sense different ion movements in various solutions, revealing the promising applications for large-area undersea detection.


Sign in / Sign up

Export Citation Format

Share Document