Rutile TiO2(011)-2 × 1 Reconstructed Surfaces with Optical Absorption over the Visible Light Spectrum

2016 ◽  
Vol 8 (40) ◽  
pp. 27403-27410 ◽  
Author(s):  
Rulong Zhou ◽  
Dongdong Li ◽  
Bingyan Qu ◽  
Xiaorui Sun ◽  
Bo Zhang ◽  
...  
2021 ◽  
Author(s):  
Junli Chang ◽  
Liping Jiang ◽  
Guangzhao Wang ◽  
Yuhong Huang ◽  
Hong Chen

The optical absorption performance of the perovskite FAPbI3 in the visible-light range is significantly improved by constructing a CdS/FAPbI3 heterostructure.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Chun-Hung Huang ◽  
Yu-Ming Lin ◽  
I-Kai Wang ◽  
Chun-Mei Lu

A variety of carbon-modified titania powders were prepared by impregnation method using a commercial available titania powder, Hombikat UV100, as matrix material while a range of alcohols from propanol to hexanol were used as precursors of carbon sources. Rising the carbon number of alcoholic precursor molecule, the modified titania showed increasing visible activities ofNOxphotodegradation. The catalyst modified with cyclohexanol exhibited the best activities of 62%, 62%, 59%, and 54% for the totalNOxremoval under UV, blue, green, and red light irradiation, respectively. The high activity with long wavelength irradiation suggested a good capability of photocatalysis in full visible light spectrum. Analysis of UV-visible spectrum indicated that carbon modification promoted visible light absorption and red shift in band gap. XPS spectroscopic analysis identified the existence of carbonate species (C=O), which increased with the increasing carbon number of precursor molecule. Photoluminescence spectra demonstrated that the carbonate species suppressed the recombination rate of electron-hole pair. As a result, a mechanism of visible-light-active photocatalyst was proposed according to the formation of carbonate species on carbon-modified TiO2.


2014 ◽  
Vol 224 ◽  
pp. 77-82 ◽  
Author(s):  
Xiaolu Liu ◽  
Haimin Zhang ◽  
Chang Liu ◽  
Jiangyao Chen ◽  
Guiying Li ◽  
...  

Author(s):  
Susanne Reischauer ◽  
Volker Strauss ◽  
Bartholomäus Pieber

The combination of nickel- and photocatalysis has unlocked a variety of cross couplings. These protocols rely on a few photocatalysts that can only convert a small portion of visible light (<500 nm) into chemical energy. Many dyes that absorb a much broader spectrum of light are not applicable due to their short-lived excited states. Here we describe a self-assembling catalyst system that overcomes this limitation. The modular approach combines nickel catalysis with dye-sensitized titanium dioxide and can be used to catalyze various bond formations. <br>


2018 ◽  
Vol 47 (20) ◽  
pp. 7070-7076 ◽  
Author(s):  
Haruo Imagawa ◽  
Xiaoyong Wu ◽  
Hiroshi Itahara ◽  
Shu Yin ◽  
Kazunobu Kojima ◽  
...  

Ca-Bridged siloxenes with a wide optical absorption band from the visible to ultraviolet region exhibited photocatalytic activity for NO removal.


Sign in / Sign up

Export Citation Format

Share Document