Monoolein Cubic Phase Gels and Cubosomes Doped with Magnetic Nanoparticles–Hybrid Materials for Controlled Drug Release

2017 ◽  
Vol 9 (3) ◽  
pp. 2796-2805 ◽  
Author(s):  
Monika Szlezak ◽  
Dorota Nieciecka ◽  
Aleksandra Joniec ◽  
Marek Pękała ◽  
Ewa Gorecka ◽  
...  
2018 ◽  
Vol 5 (1) ◽  
pp. 1 ◽  
Author(s):  
Jessica Oliveira ◽  
Raquel Rodrigues ◽  
Lillian Barros ◽  
Isabel Ferreira ◽  
Luís Marchesi ◽  
...  

In this study, hydrophilic magnetic nanoparticles were synthesized by green routes using a methanolic extract of Rubus ulmifolius Schott flowers. The prepared magnetic nanoparticles were coated with carbon-based shell for drug delivery application. The nanocomposites were further chemically functionalized with nitric acid and, sequentially, with Pluronic® F68 (CMNPs-plur) to enhance their colloidal stability. The resulting material was dispersed in phosphate buffer solution at pH 7.4 to study the Doxorubicin loading. After shaking for 48 h, 99.13% of the drug was loaded by the nanocomposites. Subsequently, the drug release was studied in different working phosphate buffer solutions (i.e., PB pH 4.5, pH 6.0 and pH 7.4) to determine the efficiency of the synthesized material for drug delivery as pH-dependent drug nanocarrier. The results have shown a drug release quantity 18% higher in mimicking tumor environment than in the physiological one. Therefore, this study demonstrates the ability of CMNPs-plur to release a drug with pH dependence, which could be used in the future for the treatment of cancer "in situ" by means of controlled drug release.


2018 ◽  
Vol 161 ◽  
pp. 347-355 ◽  
Author(s):  
Sivaraj Ramasamy ◽  
Beniya Samathanam ◽  
Helfried Reuther ◽  
Muthukumar Nadar Meenakshi Subbaraman Adyanpuram ◽  
Israel Vijayaraj Muthu Vijayan Enoch ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1248
Author(s):  
Beatriz D. Cardoso ◽  
Ana Rita O. Rodrigues ◽  
Manuel Bañobre-López ◽  
Bernardo G. Almeida ◽  
Carlos O. Amorim ◽  
...  

Multifunctional lipid nanocarriers are a promising therapeutic approach for controlled drug release in cancer therapy. Combining the widely used liposome structure with magnetic nanoparticles in magnetoliposomes allies, the advantages of using liposomes include the possibility to magnetically guide, selectively accumulate, and magnetically control the release of drugs on target. The effectiveness of these nanosystems is intrinsically related to the individual characteristics of the two main components—lipid formulation and magnetic nanoparticles—and their physicochemical combination. Herein, shape-anisotropic calcium-substituted magnesium ferrite nanoparticles (Ca0.25Mg0.75Fe2O4) were prepared for the first time, improving the magnetic properties of spherical counterparts. The nanoparticles revealed a superparamagnetic behavior, high saturation magnetization (50.07 emu/g at 300 K), and a large heating capacity. Furthermore, a new method for the synthesis of solid magnetoliposomes (SMLs) was developed to enhance their magnetic response. The manufacturing technicalities were optimized with different lipid compositions (DPPC, DPPC/Ch, and DPPC/DSPE-PEG) originating nanosystems with optimal sizes for biomedical applications (around or below 150 nm) and low polydispersity index. The high encapsulation efficiency of doxorubicin in these magnetoliposomes was proven, as well as the ability of the drug-loaded nanosystems to interact with cell membrane models and release DOX by fusion. SMLs revealed to reduce doxorubicin interaction with human serum albumin, contributing to a prolonged bioavailability of the drug upon systemic administration. Finally, the drug release kinetic assays revealed a preferable DOX release at hyperthermia temperatures (42 °C) and acidic conditions (pH = 5.5), indicating them as promising controlled release nanocarriers by either internal (pH) and external (alternate magnetic field) stimuli in cancer therapy.


2009 ◽  
Vol 21 (3) ◽  
pp. 463-467 ◽  
Author(s):  
C. V. Santilli ◽  
L. A. Chiavacci ◽  
L. Lopes ◽  
S. H. Pulcinelli ◽  
A. G. Oliveira

2014 ◽  
Vol 82 ◽  
pp. 355-362 ◽  
Author(s):  
Alfonso Latorre ◽  
Pierre Couleaud ◽  
Antonio Aires ◽  
Aitziber L. Cortajarena ◽  
Álvaro Somoza

2021 ◽  
Vol 2 (1) ◽  
pp. 51-60
Author(s):  
Mostafa Yusefi ◽  
Kamyar Shameli ◽  
Siti Nur Amalina Mohamad Sukri

The activation of MNPs for hyperthermia therapy via an external alternating magnetic field is an interesting method in targeted cancer therapy. This mini-review explains new developments and implications of magnetic nanofluids mediated magnetic hyperthermia for their potential use in future clinical settings. The external alternating magnetic field generates heat in the tumor area to eliminate cancer cells. Depending on the tumor type and targeted area, several kinds of MNPs with different coating agents of various morphology and surface charge have been developed. The tunable physiochemical characteristics of MNPs enhance their heating capability. In addition, heating efficiency is strongly associated with the amount of the applied magnetic field and frequency. The great efforts have offered promising preclinical trials of magnetic hyperthermia via MNPs as a smart nanoagent. MNPs are very appropriate to be considered as a heating source in MHT and prospective research in this field will lead to tackle the problems from chemotherapy and introduce promising therapeutic techniques and nanodrug formulations for remotely controlled drug release and anticancer effects. This mini-review aims to pinpoint synthesis and structural analysis of various magnetic nanoparticles examined for magnetic hyperthermia therapy and controlled drug release in cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document