External Magnetic Field-Enhanced Chemo-Photothermal Combination Tumor Therapy via Iron Oxide Nanoparticles

2017 ◽  
Vol 9 (19) ◽  
pp. 16581-16593 ◽  
Author(s):  
Xiaomeng Guo ◽  
Wei Li ◽  
Lihua Luo ◽  
Zuhua Wang ◽  
Qingpo Li ◽  
...  
Nanoscale ◽  
2020 ◽  
Vol 12 (19) ◽  
pp. 10550-10558 ◽  
Author(s):  
Stephen Lyons ◽  
Eoin P. Mc Kiernan ◽  
Garret Dee ◽  
Dermot F. Brougham ◽  
Aoife Morrin

Factors that determine magnetophoretic transport of magnetic nanoparticles (MNPs) through hydrated polymer networks under the influence of an external magnetic field gradient were studied.


2019 ◽  
Vol 242 ◽  
pp. 13-16 ◽  
Author(s):  
J. Arenas-Alatorre ◽  
S. Tehuacanero C. ◽  
O. Lukas ◽  
A. Rodríguez-Gómez ◽  
R. Hernández Reyes ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1551
Author(s):  
Virendra Kumar Yadav ◽  
Daoud Ali ◽  
Samreen Heena Khan ◽  
Govindhan Gnanamoorthy ◽  
Nisha Choudhary ◽  
...  

Nanoparticles have gained huge attention in the last decade due to their applications in electronics, medicine, and environmental clean-up. Iron oxide nanoparticles (IONPs) are widely used for the wastewater treatment due to their recyclable nature and easy manipulation by an external magnetic field. Here, in the present research work, iron oxide nanoparticles were synthesized by the sonochemical method by using precursors of ferrous sulfate and ferric chloride at 70 °C for one hour in an ultrasonicator. The synthesized iron oxide nanoparticles were characterized by diffraction light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), electron diffraction spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM). The FTIR analysis exhibits characteristic absorption bands of IONPs at 400–800 cm−1, while the Raman spectra showed three characteristic bands at 273, 675, and 1379 cm−1 for the synthesized IONPs. The XRD data revealed three major intensity peaks at two theta, 33°, 35°, and 64° which indicated the presence of maghemite and magnetite phase. The size of the spherical shaped IONPs was varying from 9–70 nm with an average size of 38.9 nm while the size of cuboidal shaped particle size was in microns. The purity of the synthesized IONPs was confirmed by the EDS attached to the FESEM, which clearly show sharp peaks for Fe and O, while the magnetic behavior of the IONPs was confirmed by the VSM measurement and the magnetization was 2.43 emu/g. The batch adsorption study of lead (Pb) and chromium (Cr) from 20% fly ash aqueous solutions was carried out by using 0.6 mg/100 mL IONPs, which exhibited maximum removal efficiency i.e., 97.96% and 82.8% for Pb2+ and Cr ions, respectively. The fly ash are being used in making cements, tiles, bricks, bio fertilizers etc., where the presence of fly ash is undesired property which has to be either removed or will be brought up to the value of acceptable level in the fly ash. Therefore, the synthesized IONPs, can be applied in the elimination of heavy metals and other undesired elements from fly ash with a short period of time. Moreover, the IONPs that have been used as a nanoadsorbent can be recovered from the reaction mixture by applying an external magnetic field that can be recycled and reused. Therefore, this study can be effective in all the fly ash-based industries for elimination of the undesired elements, while recyclability and reusable nature of IONPs will make the whole adsorption or elimination process much economical.


2015 ◽  
Vol 40 (2) ◽  
pp. e104-e110 ◽  
Author(s):  
Mauro Liberatore ◽  
Mario Barteri ◽  
Valentina Megna ◽  
Piera D’Elia ◽  
Stefania Rebonato ◽  
...  

2017 ◽  
Vol 6 (5) ◽  
pp. 449-472 ◽  
Author(s):  
Marina Fontes de Paula Aguiar ◽  
Javier Bustamante Mamani ◽  
Taylla Klei Felix ◽  
Rafael Ferreira dos Reis ◽  
Helio Rodrigues da Silva ◽  
...  

AbstractThe purpose of this study was to review the use of the magnetic targeting technique, characterized by magnetic driving compounds based on superparamagnetic iron oxide nanoparticles (SPIONs), as drug delivery for a specific brain locus in gliomas. We reviewed a process mediated by the application of an external static magnetic field for targeting SPIONs in gliomas. A search of PubMed, Cochrane Library, Scopus, and Web of Science databases identified 228 studies, 23 of which were selected based on inclusion criteria and predetermined exclusion criteria. The articles were analyzed by physicochemical characteristics of SPIONs used, cell types used for tumor induction, characteristics of experimental glioma models, magnetic targeting technical parameters, and analysis method of process efficiency. The study shows the highlights and importance of magnetic targeting to optimize the magnetic targeting process as a therapeutic strategy for gliomas. Regardless of the intensity of the patterned magnetic field, the time of application of the field, and nanoparticle used (commercial or synthesized), all studies showed a vast advantage in the use of magnetic targeting, either alone or in combination with other techniques, for optimized glioma therapy. Therefore, this review elucidates the preclinical and therapeutic applications of magnetic targeting in glioma, an innovative nanobiotechnological method.


Sign in / Sign up

Export Citation Format

Share Document