scholarly journals Functionalized Co2FeAl Nanoparticles for Detection of SARS CoV-2 Based on Reverse Transcriptase Loop-Mediated Isothermal Amplification

Author(s):  
Ujjwal Ranjan Dahiya ◽  
Guru Dutt Gupt ◽  
Rajendra S. Dhaka ◽  
Dinesh Kalyanasundaram
Lab on a Chip ◽  
2015 ◽  
Vol 15 (3) ◽  
pp. 718-725 ◽  
Author(s):  
J. H. Jung ◽  
B. H. Park ◽  
S. J. Oh ◽  
G. Choi ◽  
T. S. Seo

In this paper, we demonstrated an integrated centrifugal microdevice which could perform reverse transcriptase loop-mediated isothermal amplification and immunochromatographic strip based amplicon analysis for rapid, sensitive, and multiplex influenza A virus detection.


Author(s):  
Mohammad Amin Almasi ◽  
Marya Esmaili

Background: Research shows that prostate cancer ranks second among the top five most common cancers in men. It has been confirmed that when circulating Prostate Specific Antigen (PSA) transcripts are successfully detected, prostate cancer cells can be diagnosed at an early stage. A reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) assay was developed and compared to reverse transcriptase polymerase chain reaction (RT-PCR) assay for detection of PSA. Methods: 47 patients, including 30 patients with prostate cancer, 15 with Benign Prostate Hyperplasia (BPH) and 2 healthy subjects as negative controls were included in this study. The prostate cancer cell lines (PC3 and LNCaP) of two patients were included in the study as positive controls. Next, RNA was extracted from fresh samples and a first strand cDNA synthesis kit was applied for the synthesis of cDNA. The human prostate specific antigen gene was used to design specific primers. Results: The results indicated that the control subjects and participants suffering from BPH were not positive. 13 out of 15 (86.6%) patients suffering from localized cancer were PSA positive. PSA positive results were observed among all 15 metastatic patients and positive controls (100%). RT-LAMP is an advantageous method because it is highly sensitive (1000-fold), quite cheap, user-friendly, and safe; in addition, it can be quickly performed by visual detection using GineFinderTM dye in a water bath. Conclusion: RT-LAMP technique can be simply and reliably applied with the aid of basic instruments, and its results can be visually inspected in laboratory studies.


2011 ◽  
Vol 77 (18) ◽  
pp. 6495-6501 ◽  
Author(s):  
Guodong Zhang ◽  
Eric W. Brown ◽  
Narjol González-Escalona

ABSTRACTContamination of foods, especially produce, withSalmonellaspp. is a major concern for public health. Several methods are available for the detection ofSalmonellain produce, but their relative efficiency for detectingSalmonellain commonly consumed vegetables, often associated with outbreaks of food poisoning, needs to be confirmed. In this study, the effectiveness of three molecular methods for detection ofSalmonellain six produce matrices was evaluated and compared to the FDA microbiological detection method. Samples of cilantro (coriander leaves), lettuce, parsley, spinach, tomato, and jalapeno pepper were inoculated withSalmonellaserovars at two different levels (105and <101CFU/25 g of produce). The inoculated produce was assayed by the FDASalmonellaculture method (Bacteriological Analytical Manual) and by three molecular methods: quantitative real-time PCR (qPCR), quantitative reverse transcriptase real-time PCR (RT-qPCR), and loop-mediated isothermal amplification (LAMP). Comparable results were obtained by these four methods, which all detected as little as 2 CFU ofSalmonellacells/25 g of produce. All control samples (not inoculated) were negative by the four methods. RT-qPCR detects only liveSalmonellacells, obviating the danger of false-positive results from nonviable cells. False negatives (inhibition of either qPCR or RT-qPCR) were avoided by the use of either a DNA or an RNA amplification internal control (IAC). Compared to the conventional culture method, the qPCR, RT-qPCR, and LAMP assays allowed faster and equally accurate detection ofSalmonellaspp. in six high-risk produce commodities.


Sign in / Sign up

Export Citation Format

Share Document