Biomimetic and Hydrophilic Vitamin B5 Analogous Methacrylamide Polymers Prevent Surface Fouling

Author(s):  
Diego Combita ◽  
Nauman Nazeer ◽  
Adnan Murad Bhayo ◽  
Marya Ahmed
Keyword(s):  
2021 ◽  
Vol 22 (2) ◽  
pp. 692
Author(s):  
Davide Corinti ◽  
Barbara Chiavarino ◽  
Debora Scuderi ◽  
Caterina Fraschetti ◽  
Antonello Filippi ◽  
...  

Pantothenic acid, also called vitamin B5, is an essential nutrient involved in several metabolic pathways. It shows a characteristic preference for interacting with Ca(II) ions, which are abundant in the extracellular media and act as secondary mediators in the activation of numerous biological functions. The bare deprotonated form of pantothenic acid, [panto-H]−, its complex with Ca(II) ion, [Ca(panto-H)]+, and singly charged micro-hydrated calcium pantothenate [Ca(panto-H)(H2O)]+ adduct have been obtained in the gas phase by electrospray ionization and assayed by mass spectrometry and IR multiple photon dissociation spectroscopy in the fingerprint spectral range. Quantum chemical calculations at the B3LYP(-D3) and MP2 levels of theory were performed to simulate geometries, thermochemical data, and linear absorption spectra of low-lying isomers, allowing us to assign the experimental absorptions to particular structural motifs. Pantothenate was found to exist in the gas phase as a single isomeric form showing deprotonation on the carboxylic moiety. On the contrary, free and monohydrated calcium complexes of deprotonated pantothenic acid both present at least two isomers participating in the gas-phase population, sharing the deprotonation of pantothenate on the carboxylic group and either a fourfold or fivefold coordination with calcium, thus justifying the strong affinity of pantothenate for the metal.


Corrosion inhibition of mild steel in 240 ppm NaCl solution using Calcium D-Pantothenate (Vitamin B5 ) as corrosion inhibitor is studied using electrochemical impedance, potentiodynamic polarization and weight loss studies. From the potentiodynamic polarization studies, icorr (corrosion current density) decreases with increasing the concentration of vitamin B5 (VB5 ). The CR (corrosion rate) decreases and the IE (inhibition efficiency) of VB5 increases on increasing the concentration of VB5 .Surface investigation using SEM, EDX spectra, UV-Vis, FTIR, electrochemical impedance, potentiodynamic polarization and adsorption isotherm parameter of VB5 in 240 ppm NaCl solution shows that VB5 can act asworthy corrosion inhibitors. Quantum chemical data obtained from density functional theory (DFT) calculations also agreed with the experimental outcomes.


2014 ◽  
Vol 42 (4) ◽  
pp. 1056-1062 ◽  
Author(s):  
Hongorzul Davaapil ◽  
Yugo Tsuchiya ◽  
Ivan Gout

In all living organisms, CoA (coenzyme A) is synthesized in a highly conserved process that requires pantothenic acid (vitamin B5), cysteine and ATP. CoA is uniquely designed to function as an acyl group carrier and a carbonyl-activating group in diverse biochemical reactions. The role of CoA and its thioester derivatives, including acetyl-CoA, malonyl-CoA and HMG-CoA (3-hydroxy-3-methylglutaryl-CoA), in the regulation of cellular metabolism has been extensively studied and documented. The main purpose of the present review is to summarize current knowledge on extracellular and intracellular signalling functions of CoA/CoA thioesters and to speculate on future developments in this area of research.


2021 ◽  
Author(s):  
Shahid Siddique ◽  
Zoran S. Radakovic ◽  
Clarissa Hiltl ◽  
Clement Pellegrin ◽  
Thomas J. Baum ◽  
...  

AbstractPlant-parasitic nematodes are a major, and in some cases a dominant, threat to crop production in all agricultural systems. The relative scarcity of classical resistance genes highlights a pressing need to identify new ways to develop nematode-resistant germplasm. Here, we sequence and assemble a high-quality genome of the model cyst nematode Heterodera schachtii to provide a platform for the first system-wide dual analysis of host and parasite gene expression over time, covering all major stages of the interaction. This novel approach enabled the analysis of the hologenome of the infection site, to identify metabolic pathways that were incomplete in the parasite but complemented by the host. Using a combination of bioinformatic, genetic, and biochemical approaches, we show that the highly atypical completion of vitamin B5 biosynthesis by the parasitic animal, putatively enabled by a horizontal gene transfer from a bacterium, is critically important for parasitism. Knockout of either the plant-encoded or the now nematode-encoded steps in the pathway blocks parasitism. Our experiments establish a reference for cyst nematodes, use this platform to further our fundamental understanding of the evolution of plant-parasitism by nematodes, and show that understanding congruent differential expression of metabolic pathways represents a new way to find nematode susceptibility genes, and thereby, targets for future genome editing-mediated generation of nematode-resistant crops.


2020 ◽  
Vol 2020 (27) ◽  
pp. 4122-4129
Author(s):  
Benyamin Hasanpour ◽  
Maasoumeh Jafarpour ◽  
Ameneh Eskandari ◽  
Abdolreza Rezaeifard
Keyword(s):  

Author(s):  
Marc‐André Müller ◽  
Jonathan Medlock ◽  
Zoltán Prágai ◽  
Ines Warnke ◽  
Gilberto Litta ◽  
...  
Keyword(s):  

2012 ◽  
Vol 134 (1) ◽  
pp. 540-545 ◽  
Author(s):  
Simon A. Haughey ◽  
Christopher T. Elliott ◽  
Michalina Oplatowska ◽  
Linda D. Stewart ◽  
Caroline Frizzell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document