Synthesis and Biomedical Applications of Copper Oxide Nanoparticles: An Expanding Horizon

2019 ◽  
Vol 5 (3) ◽  
pp. 1170-1188 ◽  
Author(s):  
Nishant Verma ◽  
Nikhil Kumar
RSC Advances ◽  
2016 ◽  
Vol 6 (112) ◽  
pp. 110986-110995 ◽  
Author(s):  
V. Gopinath ◽  
S. Priyadarshini ◽  
A. R. Al-Maleki ◽  
M. Alagiri ◽  
Rosiyah Yahya ◽  
...  

Herein, copper oxide nanoparticles (CuONPs) are proposed for widespread use in emerging biomedical applications.


2020 ◽  
Vol Volume 15 ◽  
pp. 3983-3999 ◽  
Author(s):  
Navid Rabiee ◽  
Mojtaba Bagherzadeh ◽  
Mahsa Kiani ◽  
Amir Mohammad Ghadiri ◽  
Fatemeh Etessamifar ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
S. Rajeshkumar ◽  
Soumya Menon ◽  
Venkat Kumar S ◽  
M. Ponnanikajamideen ◽  
Daoud Ali ◽  
...  

Recently, nontoxic origin-mediated synthesis of copper oxide nanoparticles acquires further recognition because of the key role of bioapplications. The plant Cissus quadrangularis is one most prominent herbs used in the treatment of diabetes, asthma, tissue regeneration, etc. In this study, we tested the process of copper oxide nanoparticle synthesis and their role in many functions from Cissus quadrangularis. The synthesis of copper oxide nanoparticles uses plant extract and characterization by X-ray diffraction, thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), atomic force microscope (AFM), and scanning electron microscope (SEM). The synthesized nanoparticles were analyzed for their biomedical applications such as antibacterial, antifungal, antioxidant, antidiabetic, and anti-inflammatory activity and antiproteinase action. The results show that the C. quadrangularis plant-mediated nanoparticles may be used in many biomedical applications related to arthritis, diabetes, and the production of various antimicrobial products in the future.


Author(s):  
Haider Qassim Raheem ◽  
Takwa S. Al-meamar ◽  
Anas M. Almamoori

Fifty specimens were collected from wound patients who visited Al-Hilla Teaching Hospital. The samples were grown on Blood and MacConkey agar for 24-48 hr at 37oC. The bacterial isolates which achieved as a pure and predominant growth from clinical samples as Pseudomonas fluorescens, were identified using morphological properties and Vitek2 system. The anti-bacterial activity of copper oxide nanoparticles (CuO NPs) against was tested by (disk diffusion assay) using dilutions of (400, 200, 100, 50, 25, and 12.5‎µ‎g/ml). The (MIC and MBC) of each isolate was determined. CuO NPs shows wide spectrum antibacterial activity against tested bacteria with rise zone of inhibition diameter that is proportionate with the increase in nanoparticle concentration. The MIC of CuO NPs extended from 100-200‎µ‎g/ml and the MBC ranged from 200-400‎µ‎g/ml. The antibiotic profile was determined by Viteck 2 compact system (Biomérieux). CuO NPs‎ found highly effective and safe in P. fluorescens wounds infections comparing with used antibiotics.


2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Hemalatha D ◽  
Saraswath S

In material science, green method for synthesis of nanomaterials is feasible, cheaper and eco-friendly protocol. To accomplish this phenomenon, present study was aimed to synthesize Copper oxide nanoparticles using leaf extract of Aloevera with two different precursors CuCl2.2H2O (Cupric chloride) and CuSo4.5H2O (Cupric sulfate). The extraction of Aloevera is employed as reducing and stabilizing agent for this synthesis.Copper oxide Nanoparticles is effective use of biomedical application due to their antibacterial function. The synthesized Copper oxide nanoparticles were characterized by X-Ray Diffraction Spectroscopy (XRD), Energy Dispersive Spectroscopy (EDX), FourierTransform Infrared Spectroscopy (FT- IR) and Scanning Electron Microscope(SEM). XRD studies reveal the crystallographic nature of Copper oxide nanoparticles. Furthermore the Copper oxide nanoparticles have good Antibacterial activity against both gram negative (E.Coli, Klebsiella pneumonia) and gram positive (Bacillus cereus, Staphylococcus aureus)bacteria.


Sign in / Sign up

Export Citation Format

Share Document