In vitro toxicity, apoptosis and antimicrobial effects of phyto-mediated copper oxide nanoparticles

RSC Advances ◽  
2016 ◽  
Vol 6 (112) ◽  
pp. 110986-110995 ◽  
Author(s):  
V. Gopinath ◽  
S. Priyadarshini ◽  
A. R. Al-Maleki ◽  
M. Alagiri ◽  
Rosiyah Yahya ◽  
...  

Herein, copper oxide nanoparticles (CuONPs) are proposed for widespread use in emerging biomedical applications.

2019 ◽  
Vol 13 (6) ◽  
pp. 795-811 ◽  
Author(s):  
Taylor E. Henson ◽  
Jana Navratilova ◽  
Alan H. Tennant ◽  
Karen D. Bradham ◽  
Kim R. Rogers ◽  
...  

Author(s):  
Seyedeh R. Alizadeh ◽  
Mohammad A. Ebrahimzadeh

Background: Cancer is defined as an abnormal/uncontrolled cell growth that shows rapid cell division. This disease is annually recognized in more than ten million people. Nanomaterials can be used as new strategies for cancer therapy. Nanostructured devices have developed for drug delivery and controlled release and created novel anticancer chemotherapies. Nanomaterials were taken into consideration because of their new properties, containing a large specific surface area and high reactivity. Copper oxide nanoparticles (CuONPs) have potential applications in many fields like heterogeneous catalysis, antibacterial, anticancer, antioxidant, antifungal, antiviral, imaging agents, and drug delivery agents in biomedicine. CuONPs display different physical properties, such as hightemperature superconductivity, electron correlation effects, and spin dynamics. NPs can be synthesized using different methods like physical, chemical, and biological methods. Methods: Copper oxide nanoparticles (CuONPs) have been suggested for its broad usage in biomedical applications. In this review, we tried to exhibit the results of significant anticancer activity of green synthesized CuONPs and their characterization by different analytical techniques such as UV-Vis, FT-IR, XRD, EDAX, DLS, SEM, and TEM. Results: The green method for the synthesis of CuO nanoparticles as eco-friendly, cost-effective, and facile method is the more effective method. Synthesized CuONPs from this method have an appropriate size and shape. The Green synthesized CuONPs exhibited high potential against several breast cancer (AMJ-13, MCF-7, and HBL-100 cell lines), cervical cancer (HeLa), colon cancer (HCT-116), gastric cancer (human adenocarcinoma AGS cell line), lung cancer (A549), leukemia cancer, and other cancers with the main toxicity approach of increasing ROS production. Conclusion: The present review confirms the importance of green synthesized CuO nanoparticles in medical science especially cancer therapy that exhibited high activity against different cancer in both in vitro and in vivo. The main toxicity approach of CuONPs is increasing the production of reactive oxygen species (ROS). It needs to perform more studies about in vivo cancer therapy and following clinical trial testing in the future. We believe that green synthesized CuO nanoparticles can be used for the improvement of different diseases.


2016 ◽  
Vol 5 (1) ◽  
pp. 235-247 ◽  
Author(s):  
Gözde Kiliç ◽  
Carla Costa ◽  
Natalia Fernández-Bertólez ◽  
Eduardo Pásaro ◽  
João Paulo Teixeira ◽  
...  

Iron oxide nanoparticles (ION) have been widely used in biomedical applications, for both diagnosis and therapy, due to their unique magnetic properties.


RSC Advances ◽  
2015 ◽  
Vol 5 (83) ◽  
pp. 68169-68178 ◽  
Author(s):  
Dipranjan Laha ◽  
Arindam Pramanik ◽  
Sourav Chattopadhyay ◽  
Sandip kumar Dash ◽  
Somenath Roy ◽  
...  

Targeted delivery of copper oxide nanoparticles for breast cancer therapy.


2018 ◽  
Vol 17 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Nasim Rahmani Kukia ◽  
Ardeshir Abbasi ◽  
Seyyed Maysam Abtahi Froushani

Due to cytotoxic potential, Copper Oxide Nanoparticles (CuO NPs) have recently been studied in various in vivo and in culture cell line. Also, CuO has received much attention in cancer therapy. We aimed to evaluate the cytotoxicity of CuO NPs on glial cancer (B92) cell line. B92 cancer cells were cultured with CuO NPs at different concentrations (5, 10, and 20 μg/ml) with 30 and 60 nm particle size. Then, cancer cells were incubated for 24 hrs. The apoptosis and cytotoxicity of cells were estimated by acridine orange/propidium iodide staining and MTT assay, respectively. Both sizes of CuO NPs had cytotoxic effect. Even with the lowest concentration, the cytotoxic impact accommodated 32% of cell apoptosis with 30 nm size. When the concentration of CuO NPs increased, viability decreased and apoptosis increased. However, these amounts have no significant changes in the concentration of 10 to 20 μg/ml between two particle sizes (30 and 60 nm). The IC50 was decreased as the size of particles increased, but there was no significant change. This finding suggests that exposure to CuO NPs had significant cytotoxic effect with the sizes tested when compared to unexposed control in a way that the smaller size and higher concentration exerted the maximum cytotoxic effects. It seems that augmentation may not have any impact on their in vitro cytotoxicity.Dhaka Univ. J. Pharm. Sci. 17(1): 105-111, 2018 (June)


Nanomedicine ◽  
2018 ◽  
Vol 13 (19) ◽  
pp. 2415-2433 ◽  
Author(s):  
Puja Kumari ◽  
Pritam Kumar Panda ◽  
Ealisha Jha ◽  
Nandini Pramanik ◽  
Kumari Nisha ◽  
...  

2014 ◽  
Vol 12 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Shahrbanoo Rafiei ◽  
Gholam Hossein Riazi ◽  
Ali Afrasiabi ◽  
Ali Dadras ◽  
Mojtaba Khajeloo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document