Elucidating the Photoredox Nature of Isolated Iron Active Sites on MCM-41

ACS Catalysis ◽  
2017 ◽  
Vol 7 (3) ◽  
pp. 1646-1654 ◽  
Author(s):  
Laura Collado ◽  
Ingrid Jansson ◽  
Ana E. Platero-Prats ◽  
Virginia Perez-Dieste ◽  
Carlos Escudero ◽  
...  
2019 ◽  
Vol 9 (3) ◽  
pp. 811-821 ◽  
Author(s):  
Zhao-Meng Wang ◽  
Li-Juan Liu ◽  
Bo Xiang ◽  
Yue Wang ◽  
Ya-Jing Lyu ◽  
...  

The catalytic activity decreases as –(SiO)3Mo(OH)(O) > –(SiO)2Mo(O)2 > –(O)4–MoO.


2020 ◽  
Author(s):  
Travis Marshall-Roth ◽  
Nicole J. Libretto ◽  
Alexandra T. Wrobel ◽  
Kevin Anderton ◽  
Nathan D. Ricke ◽  
...  

Iron- and nitrogen-doped carbon (Fe-N-C) materials are leading candidates to replace platinum in fuel cells, but their active site structures are poorly understood. A leading postulate is that iron active sites in this class of materials exist in an Fe-N<sub>4</sub> pyridinic ligation environment. Yet, molecular Fe-based catalysts for the oxygen reduction reaction (ORR) generally feature pyrrolic coordination and pyridinic Fe-N<sub>4</sub> catalysts are, to the best of our knowledge, non-existent. We report the synthesis and characterization of a molecular pyridinic hexaazacyclophane macrocycle, (phen<sub>2</sub>N<sub>2</sub>)Fe, and compare its spectroscopic, electrochemical, and catalytic properties for oxygen reduction to a prototypical Fe-N-C material, as well as iron phthalocyanine, (Pc)Fe, and iron octaethylporphyrin, (OEP)Fe, prototypical pyrrolic iron macrocycles. N 1s XPS signatures for coordinated N atoms in (phen<sub>2</sub>N<sub>2</sub>)Fe are positively shifted relative to (Pc)Fe and (OEP)Fe, and overlay with those of Fe-N-C. Likewise, spectroscopic XAS signatures of (phen<sub>2</sub>N<sub>2</sub>)Fe are distinct from those of both (Pc)Fe and (OEP)Fe, and are remarkably similar to those of Fe-N-C with compressed Fe–N bond lengths of 1.97 Å in (phen<sub>2</sub>N<sub>2</sub>)Fe that are close to the average 1.94 Å length in Fe-N-C. Electrochemical studies establish that both (Pc)Fe and (phen<sub>2</sub>N<sub>2</sub>)Fe have relatively high Fe(III/II) potentials at ~0.6 V, ~300 mV positive of (OEP)Fe. The ORR onset potential is found to directly correlate with the Fe(III/II) potential leading to a ~300 mV positive shift in the onset of ORR for (Pc)Fe and (phen<sub>2</sub>N<sub>2</sub>)Fe relative to (OEP)Fe. Consequently, the ORR onset for (phen<sub>2</sub>N<sub>2</sub>)Fe and (Pc)Fe is within 150 mV of Fe-N-C. Unlike (OEP)Fe and (Pc)Fe, (phen<sub>2</sub>N<sub>2</sub>)Fe displays excellent selectivity for 4-electron ORR with <4% maximum H<sub>2</sub>O<sub>2</sub> production, comparable to Fe-N-C materials. The aggregate spectroscopic and electrochemical data establish (phen<sub>2</sub>N<sub>2</sub>)Fe as a pyridinic iron macrocycle that effectively models Fe-N-C active sites, thereby providing a rich molecular platform for understanding this important class of catalytic materials.<p><b></b></p>


2019 ◽  
Vol 41 (6) ◽  
pp. 946-946
Author(s):  
Zhengliang Qi Zhengliang Qi ◽  
Junmei Liu Junmei Liu ◽  
Wanwan Guo and Jun Huang Wanwan Guo and Jun Huang

The N-doped carbon material supported Fe catalysts were developed for the oxidation of C-H bond of hydrocarbons to ketones and alcohols. The supported Fe catalysts were prepared by pyrolysis of [CMIM]3Fe(CN)6 ionic liquid in activated carbon. And the Fe(Ⅲ)@CN-600 showed good activity and high selectivity for the oxidation of alfa C-H bond of alkylbenzenes. The isolated Fe(Ⅲ) iron active sites should be responsible for the high activity and selectivity for the oxidation of hydrocarbons to ketones. Several ketones were obtained in good to excellent yields. Moreover, cyclohexanone can also be obtained through the oxidation of cyclohexane.


2004 ◽  
Vol 104 (2) ◽  
pp. 939-986 ◽  
Author(s):  
Miquel Costas ◽  
Mark P. Mehn ◽  
Michael P. Jensen ◽  
Lawrence Que

1999 ◽  
Vol 184 (1) ◽  
pp. 49-60 ◽  
Author(s):  
H Kosslick ◽  
G Lischke ◽  
B Parlitz ◽  
W Storek ◽  
R Fricke
Keyword(s):  

ChemInform ◽  
2004 ◽  
Vol 35 (21) ◽  
Author(s):  
Miquel Costas ◽  
Mark P. Mehn ◽  
Michael P. Jensen ◽  
Lawrence Jr. Que

RSC Advances ◽  
2020 ◽  
Vol 10 (50) ◽  
pp. 30214-30222
Author(s):  
Bolong Jiang ◽  
Jiaojing Zhang ◽  
Yanguang Chen ◽  
Hua Song ◽  
Tianzhen Hao ◽  
...  

Co3O4/MCM-41 adsorbent with high surface area and more active sites was successfully prepared by ultrasonic assisted impregnation (UAI) technology and it has been found that the sulfur capacity was improved by 33.2% because of ultrasonication.


2020 ◽  
pp. 174751982092599
Author(s):  
Heng Zhang ◽  
Chunhao Yang ◽  
Shengying Zhao ◽  
Tingting Wang ◽  
Wancheng Zhu

Ordered mesoporous silica, SBA-15 and MCM-41, and three-dimensionally ordered macroporous SiO2 were used as the supports of H4PMo11VO40 heteropolyacid for methacrolein oxidation. The dispersion and structural evolutions of the heteropolyacid along with thermal treatment were investigated. It was found that the heteropolyacid entered the one-dimensional mesoporous channels of SBA-15 and MCM-41, and the crystallization and growth were limited, leading to high dispersion of the heteropolyacid. However, the thermal stability was decreased under high dispersion. The migration of the heteropolyacid was observed to the end of the one-dimensional channels of SBA-15 and the outer surface of MCM-41 with calcination, accompanied by the decomposition of the heteropolyacid and the formation of MoO3. In comparison, the crystallization and growth of heteropolyacid were not limited in the open macropores of three-dimensionally ordered macroporous SiO2. Dispersed particles on the surface of the macropores with size of about 5 nm exhibited a higher thermal stability. The decomposition of the heteropolyacid in the SBA-15 and MCM-41 supported catalysts resulted in the loss of strong acid sites, causing low selectivity to methacrylic acid in methacrolein oxidation. High thermal stability with high exposure of the active sites in the three-dimensionally ordered macroporous SiO2 supported catalyst contributed to the enhancement in the catalytic performance.


2016 ◽  
Vol 120 (48) ◽  
pp. 27422-27429 ◽  
Author(s):  
Miao He ◽  
Jie Zhang ◽  
Xiu-Liang Sun ◽  
Biao-Hua Chen ◽  
Yang-Gang Wang

Sign in / Sign up

Export Citation Format

Share Document