scholarly journals Ultrasonic-assisted preparation of highly active Co3O4/MCM-41 adsorbent and its desulfurization performance for low H2S concentration gas

RSC Advances ◽  
2020 ◽  
Vol 10 (50) ◽  
pp. 30214-30222
Author(s):  
Bolong Jiang ◽  
Jiaojing Zhang ◽  
Yanguang Chen ◽  
Hua Song ◽  
Tianzhen Hao ◽  
...  

Co3O4/MCM-41 adsorbent with high surface area and more active sites was successfully prepared by ultrasonic assisted impregnation (UAI) technology and it has been found that the sulfur capacity was improved by 33.2% because of ultrasonication.

2018 ◽  
Vol 29 (7) ◽  
pp. 075702 ◽  
Author(s):  
Feng Qingge ◽  
Cai Huidong ◽  
Lin Haiying ◽  
Qin Siying ◽  
Liu Zheng ◽  
...  

2016 ◽  
Vol 6 (5) ◽  
pp. 1435-1441 ◽  
Author(s):  
Seyed Mohsen Sadeghzadeh

In this study, a novel fibrous nanosilica (KCC-1) based nanocatalyst (Au, Pd, and Cu) with a high surface area and easy accessibility of active sites was successfully developed by a facile approach.


2016 ◽  
Vol 4 (43) ◽  
pp. 17129-17137 ◽  
Author(s):  
Sanpei Zhang ◽  
Zhaoyin Wen ◽  
Yang Lu ◽  
Xiangwei Wu ◽  
Jianhua Yang

We demonstrate a low-cost and facile strategy to synthesize mixed-valent MnOxspheres constructed from nanocrystals (~5 nm), containing MnII, MnIII, and MnIVspecies. Such highly active mixed-valent MnOxspheres with high surface area greatly improve the performance of Li–O2batteries.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1385
Author(s):  
Botagoz Zhuman ◽  
Shaheen Fatima Anis ◽  
Saepurahman ◽  
Gnanapragasam Singravel ◽  
Raed Hashaikeh

Zeolite-based catalysts are usually utilized in the form of a composite with binders, such as alumina, silica, clay, and others. However, these binders are usually known to block the accessibility of the active sites in zeolites, leading to a decreased effective surface area and agglomeration of zeolite particles. The aim of this work is to utilize carbon nanostructures (CNS) as a binding material for nano-zeolite-Y particles. The unique properties of CNS, such as its high surface area, thermal stability, and flexibility of its fibrous structure, makes it a promising material to hold and bind the nano-zeolite particles, yet with a contemporaneous accessibility of the reactants to the porous zeolite structure. In the current study, a nano-zeolite-Y/CNS composite catalyst was fabricated through a ball milling approach. The catalyst possesses a high surface area of 834 m2/g, which is significantly higher than the conventional commercial cracking catalysts. Using CNS as a binding material provided homogeneous distribution of the zeolite nanoparticles with high accessibility to the active sites and good mechanical stability. In addition, CNS was found to be an effective binding material for nano-zeolite particles, solving their major drawback of agglomeration. The nano-zeolite-Y/CNS composite showed 80% conversion for hexadecane catalytic cracking into valuable olefins and hydrogen gas, which was 14% higher compared to that of pure nano-zeolite-Y particles.


2016 ◽  
Vol 23 (5) ◽  
pp. 1227-1237 ◽  
Author(s):  
Haribandhu Chaudhuri ◽  
Subhajit Dash ◽  
Ashis Sarkar

NANO ◽  
2015 ◽  
Vol 10 (01) ◽  
pp. 1550005 ◽  
Author(s):  
Yaling Xie ◽  
Aidong Tang ◽  
Huaming Yang

Nanoporous materials Al -MCM-41 with varying Si / Al molar ratios have been successfully synthesized from natural clay mineral halloysite nanotubes (HNTs). Hydrothermal treatment of acid-pretreated HNTs and NaOH solution resulted in the one-step synthesis of final nanoporous products by using surfactant. The effects of Si / Al molar ratios (7.7, 61.0 and 176.5) on the surface area, porosity and degree of structural order of Al -MCM-41 materials have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), N 2 adsorption–desorption measurements and Fourier transform infrared (FTIR) spectra techniques. The results indicated that Si / Al molar ratio had important effect on the characteristics of nanoporous materials, and Al -MCM-41 with an intermediate Si / Al molar ratio of 61.0 exhibited excellent characteristics with high degree of order, high surface area (S BET ) of 1033 m2/g and pore volume of 0.92 mL/g.


2021 ◽  
Vol 7 (2) ◽  
pp. 15-19
Author(s):  
S. M. Yusof ◽  
L. P. Teh

In recent years, there has been growing interest in adsorbents with high surface area, high porosity, high stability and high selectivity for CO2 adsorption. By the incorporation of the additive on the supports such as zeolite, silica, and carbon, the physicochemical properties of the adsorbent and CO2 adsorption performance can be enhanced. In this review, we focus on the overview of bifunctional materials (BFMs) for CO2 adsorption. The findings of this study suggests that the high surface area and high porosity of the support provide a good medium for high dispersion and accessibility of additives (amine or metal oxide), enhancing the CO2 adsorption efficiency. The excessive additive however may lead to a decrease of CO2 adsorption performance due to pore blockage and the decrease of active sites for CO2 interactions. The synergistic relationship of the supporting material and additive is significant towards the enhancement of CO2 adsorption.


2015 ◽  
Vol 5 (4) ◽  
pp. 2300-2304 ◽  
Author(s):  
Gang Feng ◽  
Ping Chen ◽  
Hui Lou

Supported palladium catalysts on carbon-nitrogen composites with high surface area are highly active for aqueous-phase hydrogenation of phenol.


2018 ◽  
Vol 3 (3) ◽  
pp. 244-250 ◽  
Author(s):  
Dereck N. F. Muche ◽  
Flavio L. Souza ◽  
Ricardo H. R. Castro

A non-system specific method for the synthesis of metal oxide nanoparticles with high homogeneity, spherical morphology and high surface areas is proposed based on an aqueous precipitation.


2006 ◽  
Vol 98 (1) ◽  
pp. 131-137 ◽  
Author(s):  
N. Thanabodeekij ◽  
S. Sadthayanon ◽  
E. Gulari ◽  
S. Wongkasemjit

Sign in / Sign up

Export Citation Format

Share Document