Cathode-Supported All-Solid-State Lithium–Sulfur Batteries with High Cell-Level Energy Density

2019 ◽  
Vol 4 (5) ◽  
pp. 1073-1079 ◽  
Author(s):  
Ruochen Xu ◽  
Jie Yue ◽  
Sufu Liu ◽  
Jiangping Tu ◽  
Fudong Han ◽  
...  
2020 ◽  
Vol 5 (11) ◽  
pp. 3468-3489
Author(s):  
Daxian Cao ◽  
Yuyue Zhao ◽  
Xiao Sun ◽  
Avi Natan ◽  
Ying Wang ◽  
...  

Author(s):  
Yaqi Hu ◽  
Zhen Sun ◽  
Furong qin ◽  
Na Lv ◽  
Bingqin Li ◽  
...  

All-solid-state lithium-sulfur batteries (ASSLSBs) possess higher safety, longer lifespan, and elevated energy density compared to the traditional liquid lithium-sulfur batteries (LLSBs). However, the ion-electron insulating nature along with the large...


2020 ◽  
Vol 117 (26) ◽  
pp. 14712-14720 ◽  
Author(s):  
Chao Luo ◽  
Enyuan Hu ◽  
Karen J. Gaskell ◽  
Xiulin Fan ◽  
Tao Gao ◽  
...  

Lithium sulfur batteries (LSBs) are promising next-generation rechargeable batteries due to the high gravimetric energy, low cost, abundance, nontoxicity, and high sustainability of sulfur. However, the dissolution of high-order polysulfide in electrolytes and low Coulombic efficiency of Li anode require excess electrolytes and Li metal, which significantly reduce the energy density of LSBs. Quasi-solid-state LSBs, where sulfur is encapsulated in the micropores of carbon matrix and sealed by solid electrolyte interphase, can operate under lean electrolyte conditions, but a low sulfur loading in carbon matrix (<40 wt %) and low sulfur unitization (<70%) still limit the energy density in a cell level. Here, we significantly increase the sulfur loading in carbon to 60 wt % and sulfur utilization to ∼87% by dispersing sulfur in an oxygen-rich dense carbon host at a molecular level through strong chemical interactions of C–S and O–S. In an all-fluorinated organic lean electrolyte, the C/S cathode experiences a solid-state lithiation/delithiation reaction after the formation of solid electrolyte interphase in the first deep lithiation, completely avoiding the shuttle reaction. The chemically stabilized C/S composite retains a high reversible capacity of 541 mAh⋅g−1(based on the total weight of the C/S composite) for 200 cycles under lean electrolyte conditions, corresponding to a high energy density of 974 Wh⋅kg−1. The superior electrochemical performance of the chemical bonding-stabilized C/S composite renders it a promising cathode material for high-energy and long-cycle-life LSBs.


Carbon ◽  
2017 ◽  
Vol 111 ◽  
pp. 493-501 ◽  
Author(s):  
Pei-Yan Zhai ◽  
Jia-Qi Huang ◽  
Lin Zhu ◽  
Jia-Le Shi ◽  
Wancheng Zhu ◽  
...  

Author(s):  
Xiaohui Zhao ◽  
Chonglong Wang ◽  
Ziwei Li ◽  
Xuechun Hu ◽  
Amir A. Razzaq ◽  
...  

The lithium sulfur (Li-S) batteries have a high theoretical specific capacity (1675 mAh g-1) and energy density (2600 Wh kg-1), exerting a high perspective as the next-generation rechargeable batteries for...


Sign in / Sign up

Export Citation Format

Share Document