scholarly journals Early Returns on Small Molecule Therapeutics for SARS-CoV-2

Author(s):  
Mark N. Namchuk
2020 ◽  
Vol 7 (1) ◽  
pp. 33-47
Author(s):  
Magdalena Marciniak

Ryvu Therapeutics and Selvita originated in 2007, a time when drug discovery in Poland was still not pursued by industrial enterprises. For many years, both entities operated one company and were known under a common name Selvita S.A., combining their efforts on both innovative small-molecule therapeutics for oncology and expertise in Contract Research Services (CRO). Following more than a decade of such a hybrid business model, Selvita established a strong position in the field of drug discovery and built trust among partners, clients, and investors globally. This encouraged the leaders of the company to separate the two divisions into fully autonomous units, which in fact, had already been operating quite independently and both were successful in diverse areas of drug discovery activities. At the beginning of October 2019, two new companies were established and both parts were given independence and more opportunities for growth. Discovery and development engine was named as Ryvu Therapeutics, and the CRO part of the company remained with the name Selvita. To reach this stage, both the divisions went through an interesting journey together, supporting and strengthening each other for the benefit of both.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3386
Author(s):  
Bart Spiesschaert ◽  
Katharina Angerer ◽  
John Park ◽  
Guido Wollmann

The focus of treating cancer with oncolytic viruses (OVs) has increasingly shifted towards achieving efficacy through the induction and augmentation of an antitumor immune response. However, innate antiviral responses can limit the activity of many OVs within the tumor and several immunosuppressive factors can hamper any subsequent antitumor immune responses. In recent decades, numerous small molecule compounds that either inhibit the immunosuppressive features of tumor cells or antagonize antiviral immunity have been developed and tested for. Here we comprehensively review small molecule compounds that can achieve therapeutic synergy with OVs. We also elaborate on the mechanisms by which these treatments elicit anti-tumor effects as monotherapies and how these complement OV treatment.


Author(s):  
Tommaso C. Bulfone ◽  
Stephen P. Samuel ◽  
Philip L. Bickler ◽  
Matthew R. Lewin

The World Health Organization (WHO) recently added snakebite envenoming to the priority list of Neglected Tropical Diseases (NTD). It is thought that ~75% of mortality following snakebite occurs outside the hospital setting, making the temporal gap between a bite and antivenom administration a major therapeutic challenge. Small molecule therapeutics (SMTs) have been proposed as potential pre-referral treatments for snakebite to help address this gap. Herein, we discuss the characteristics, potential uses and development of SMTs as potential treatments for snakebite envenomation. We focus on SMTs that are secretory phospholipase A2 (sPLA2) inhibitors and metalloprotease (MP) inhibitors.


2021 ◽  
Author(s):  
Waseem K. Raja ◽  
Esther Neves ◽  
Christopher Burke ◽  
Xin Jiang ◽  
Ping Xu ◽  
...  

There are currently no preventive or disease-modifying therapies for Parkinson′s Disease (PD). Failures in clinical trials necessitate a re-evaluation of existing pre-clinical models in order to adopt systems that better recapitulate underlying disease mechanisms and better predict clinical outcomes. In recent years, models utilizing patient-derived induced pluripotent stem cells (iPSCs) have emerged as attractive models to recapitulate disease-relevant neuropathology in vitro without exogenous overexpression of disease-related pathologic proteins. Here, we utilized iPSCs derived from patients with early-onset PD and dementia phenotypes that harbored either a point mutation (A53T) or multiplication at the Alpha-synuclein/SNCA gene locus. We generated a three-dimensional (3D) cortical neurosphere culture model to better mimic the tissue microenvironment of the brain. We extensively characterized the differentiation process using quantitative PCR, Western immunoblotting, and immunofluorescence staining. Differentiation and aging of the neurospheres revealed alterations in fatty acid profiles and elevated total and pathogenic phospho-Alpha-synuclein levels in both A53T and the triplication lines compared to their isogenic control lines. Furthermore, treatment of the neurospheres with a small molecule inhibitor of stearoyl CoA desaturase (SCD) attenuated the protein accumulation and aberrant fatty acid profile phenotypes. Our findings suggest that the 3D cortical neurosphere model is a useful tool to interrogate targets for PD and amenable to test small molecule therapeutics.


2020 ◽  
Vol 27 (3) ◽  
pp. 129-140 ◽  
Author(s):  
Lei Yu ◽  
Greggory Myers ◽  
James D. Engel

2019 ◽  
Vol 25 (38) ◽  
pp. 5115-5127 ◽  
Author(s):  
Julianna Han ◽  
Jasmine Perez ◽  
Adam Schafer ◽  
Han Cheng ◽  
Norton Peet ◽  
...  

Background: Influenza viruses cause severe upper respiratory illness in children and the elderly during seasonal epidemics. Influenza viruses from zoonotic reservoirs can also cause pandemics with significant loss of life in all age groups. Although vaccination is one of the most effective methods to protect against seasonal epidemics, seasonal vaccines vary in efficacy, can be ineffective in the elderly population, and do not provide protection against novel strains. Small molecule therapeutics are a critical part of our antiviral strategies to control influenza virus epidemics and pandemics as well as to ameliorate disease in elderly and immunocompromised individuals. Objective: This review aims to summarize the existing antiviral strategies for combating influenza viruses, the mechanisms of antiviral resistance for available drugs, and novel therapeutics currently in development. Methods: We systematically evaluated and synthesized the published scientific literature for mechanistic detail into therapeutic strategies against influenza viruses. Results: Current IAV strains have developed resistance to neuraminidase inhibitors and nearly complete resistance to M2 ion channel inhibitors, exacerbated by sub-therapeutic dosing used for treatment and chemoprophylaxis. New tactics include novel therapeutics targeting host components and combination therapy, which show potential for fighting influenza virus disease while minimizing viral resistance. Conclusion: Antiviral drugs are crucial for controlling influenza virus disease burden, but their efficacy is limited by human misuse and the capacity of influenza viruses to circumvent antiviral barriers. To relieve the public health hardship of influenza virus, emerging therapies must be selected for their capacity to impede not only influenza virus disease, but also the development of antiviral resistance.


2010 ◽  
Vol 86 (1) ◽  
pp. A58
Author(s):  
Marcela Karpuj ◽  
Darci Smith ◽  
Brenna Kelley-Clarke ◽  
Andrea Stossel ◽  
Anna Honko ◽  
...  

Genomics Data ◽  
2016 ◽  
Vol 7 ◽  
pp. 290-292 ◽  
Author(s):  
R.R. Green ◽  
C. Wilkins ◽  
S. Pattabhi ◽  
R. Dong ◽  
Y. Loo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document