scholarly journals Biochemical and Structural Characterization of Selective Allosteric Inhibitors of the Plasmodium falciparum Drug Target, Prolyl-tRNA-synthetase

2016 ◽  
Vol 3 (1) ◽  
pp. 34-44 ◽  
Author(s):  
Stephen Nakazawa Hewitt ◽  
David M. Dranow ◽  
Benjamin G. Horst ◽  
Jan A. Abendroth ◽  
Barbara Forte ◽  
...  
IUCrJ ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 478-490 ◽  
Author(s):  
Wei Wang ◽  
Bo Qin ◽  
Justyna Aleksandra Wojdyla ◽  
Meitian Wang ◽  
Xiaopan Gao ◽  
...  

Mycobacterium tuberculosis(MTB) caused 10.4 million cases of tuberculosis and 1.7 million deaths in 2016. The incidence of multidrug-resistant and extensively drug-resistant MTB is becoming an increasing threat to public health and the development of novel anti-MTB drugs is urgently needed. Methionyl-tRNA synthetase (MetRS) is considered to be a valuable drug target. However, structural characterization ofM. tuberculosisMetRS (MtMetRS) was lacking for decades, thus hampering drug design. Here, two high-resolution crystal structures of MtMetRS are reported: the free-state structure (apo form; 1.9 Å resolution) and a structure with the intermediate product methionyl-adenylate (Met-AMP) bound (2.4 Å resolution). It was found that free-state MtMetRS adopts a previously unseen conformation that has never been observed in other MetRS homologues. The pockets for methionine and AMP are not formed in free-state MtMetRS, suggesting that it is in a nonproductive conformation. Combining these findings suggests that MtMetRS employs an induced-fit mechanism in ligand binding. By comparison with the structure of human cytosolic MetRS, additional pockets specific to MtMetRS that could be used for anti-MTB drug design were located.


PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e113568 ◽  
Author(s):  
Sudagar S. Gurcha ◽  
Veeraraghavan Usha ◽  
Jonathan A. G. Cox ◽  
Klaus Fütterer ◽  
Katherine A. Abrahams ◽  
...  

2012 ◽  
Vol 183 (1) ◽  
pp. 52-62 ◽  
Author(s):  
Kathleen Zocher ◽  
Karin Fritz-Wolf ◽  
Sebastian Kehr ◽  
Marina Fischer ◽  
Stefan Rahlfs ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Manish Bhattacharjee ◽  
Navin Adhikari ◽  
Renu Sudhakar ◽  
Zeba Rizvi ◽  
Divya Das ◽  
...  

AbstractA variety of post-translational modifications of Plasmodium falciparum proteins, including phosphorylation and ubiquitination, are shown to have key regulatory roles during parasite development. NEDD8 is a ubiquitin-like modifier of cullin-RING E3 ubiquitin ligases, which regulates diverse cellular processes. Although neddylation is conserved in eukaryotes, it is yet to be characterized in Plasmodium and related apicomplexan parasites. We characterized P. falciparum NEDD8 (PfNEDD8) and identified cullins as its physiological substrates. PfNEDD8 is a 76 amino acid residue protein without the C-terminal tail, indicating that it can be readily conjugated. The wild type and mutant (Gly75Ala/Gly76Ala) PfNEDD8 were expressed in P. falciparum. Western blot of wild type PfNEDD8-expressing parasites indicated multiple high molecular weight conjugates, which were absent in the parasites expressing the mutant, indicating conjugation of NEDD8 through Gly76. Immunoprecipitation followed by mass spectrometry of wild type PfNEDD8-expressing parasites identified two putative cullins. Furthermore, we expressed PfNEDD8 in mutant S. cerevisiae strains that lacked endogenous NEDD8 (rub1Δ) or NEDD8 conjugating E2 enzyme (ubc12Δ). The PfNEDD8 immunoprecipitate also contained S. cerevisiae cullin cdc53, further substantiating cullins as physiological substrates of PfNEDD8. Our findings lay ground for investigation of specific roles and drug target potential of neddylation in malaria parasites.


2018 ◽  
Vol 430 (21) ◽  
pp. 4049-4067 ◽  
Author(s):  
Kristina Haeussler ◽  
Karin Fritz-Wolf ◽  
Max Reichmann ◽  
Stefan Rahlfs ◽  
Katja Becker

2011 ◽  
Vol 436 (3) ◽  
pp. 641-650 ◽  
Author(s):  
Esther Jortzik ◽  
Boniface M. Mailu ◽  
Janina Preuss ◽  
Marina Fischer ◽  
Lars Bode ◽  
...  

The survival of malaria parasites in human RBCs (red blood cells) depends on the pentose phosphate pathway, both in Plasmodium falciparum and its human host. G6PD (glucose-6-phosphate dehydrogenase) deficiency, the most common human enzyme deficiency, leads to a lack of NADPH in erythrocytes, and protects from malaria. In P. falciparum, G6PD is combined with the second enzyme of the pentose phosphate pathway to create a unique bifunctional enzyme named GluPho (glucose-6-phosphate dehydrogenase–6-phosphogluconolactonase). In the present paper, we report for the first time the cloning, heterologous overexpression, purification and kinetic characterization of both enzymatic activities of full-length PfGluPho (P. falciparum GluPho), and demonstrate striking structural and functional differences with the human enzymes. Detailed kinetic analyses indicate that PfGluPho functions on the basis of a rapid equilibrium random Bi Bi mechanism, where the binding of the second substrate depends on the first substrate. We furthermore show that PfGluPho is inhibited by S-glutathionylation. The availability of recombinant PfGluPho and the major differences to hG6PD (human G6PD) facilitate studies on PfGluPho as an excellent drug target candidate in the search for new antimalarial drugs.


2011 ◽  
Vol 176 (3) ◽  
pp. 292-301 ◽  
Author(s):  
George T. Lountos ◽  
Andrew G. Jobson ◽  
Joseph E. Tropea ◽  
Christopher R. Self ◽  
Guangtao Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document