Organocatalytic Copolymerization of Cyclic Lysine Derivative and ε-Caprolactam toward Antibacterial Nylon-6 Polymers

2021 ◽  
pp. 46-52
Author(s):  
Jiawei Lian ◽  
Jinlong Chen ◽  
Shifang Luan ◽  
Wei Liu ◽  
Baoning Zong ◽  
...  
Keyword(s):  
Author(s):  
A. C. Reimschuessel ◽  
V. Kramer

Staining techniques can be used for either the identification of different polymers or for the differentiation of specific morphological domains within a given polymer. To reveal morphological features in nylon 6, we choose a technique based upon diffusion of the staining agent into accessible regions of the polymer.When a crystallizable polymer - such as nylon 6 - is cooled from the melt, lamellae form by chainfolding of the crystallizing long chain macromolecules. The regions between adjacent lamellae represent the less ordered amorphous domains into which stain can diffuse. In this process the lamellae will be “outlined” by the dense stain, giving rise to contrast comparable to that obtained by “negative” staining techniques.If the cooling of the polymer melt proceeds relatively slowly - as in molding operations - the lamellae are usually arranged in a radial manner. This morphology is referred to as spherulitic.


1979 ◽  
Vol 76 ◽  
pp. 501-506 ◽  
Author(s):  
Shawky Boutros ◽  
Hanna A. Rizk ◽  
Adly Hanna ◽  
Melad Gerges
Keyword(s):  
Nylon 6 ◽  

1997 ◽  
Vol 503 ◽  
Author(s):  
H. Jiang ◽  
M. K. Davis ◽  
R. K. Eby ◽  
P. Arsenovic

ABSTRACTPhysical properties and structural parameters have been measured for ropes of nylon 6 as a function of the number of use operations. The fractional content of the α crystal form, sound velocity, birefringence, tensile strength and length all increase systematically and significantly with increasing the number of use operations. The fractional content of the γ crystal form and fiber diameter decrease with use. These trends indicate that the measurement of such properties and structural parameters, especially the length, provide a possible basis for establishing a reliable, rapid, and convenient nondestructive characterization method to predict the remaining service life of nylon 6 ropes.


2020 ◽  
Vol 35 (2) ◽  
pp. 169-183 ◽  
Author(s):  
P. Hadimani ◽  
H. N. Narasimha Murthy ◽  
R. Mudbidre
Keyword(s):  
Nylon 6 ◽  

2001 ◽  
Author(s):  
David Ostermayer ◽  
Frederick L. Beyer ◽  
Peter G. Dehmer ◽  
Melissa A. Klusewitz
Keyword(s):  

Author(s):  
Heng Xia ◽  
Hong-Zi Tan ◽  
Hongyou Cui ◽  
Feng Song ◽  
Yuan Zhang ◽  
...  

Hydrogenation of phenol is an important strategy to produce cyclohexane or cyclohexanol as both of them are raw materials for the synthesis of nylon-6 and nylon-66. Herein, we report a...


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1235
Author(s):  
Bidita Salahuddin ◽  
Rahim Mutlu ◽  
Tajwar A. Baigh ◽  
Mohammed N. Alghamdi ◽  
Shazed Aziz

Passive vibration control using polymer composites has been extensively investigated by the engineering community. In this paper, a new kind of vibration dampening polymer composite was developed where oriented nylon 6 fibres were used as the reinforcement, and 3D printed unoriented nylon 6 was used as the matrix material. The shape of the reinforcing fibres was modified to a coiled structure which transformed the fibres into a smart thermoresponsive actuator. This novel self-reinforced composite was of high mechanical robustness and its efficacy was demonstrated as an active dampening system for oscillatory vibration of a heated vibrating system. The blocking force generated within the reinforcing coiled actuator was responsible for dissipating vibration energy and increase the magnitude of the damping factor compared to samples made of non-reinforced nylon 6. Further study shows that the appropriate annealing of coiled actuators provides an enhanced dampening capability to the composite structure. The extent of crystallinity of the reinforcing actuators is found to directly influence the vibration dampening capacity.


Environments ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 34
Author(s):  
Sukanya Hongthong ◽  
Hannah S. Leese ◽  
Michael J. Allen ◽  
Christopher J. Chuck

Marine macroalgae offers a promising third generation feedstock for the production of fuels and chemicals, avoiding competition with conventional agriculture and potentially helping to improve eutrophication in seas and oceans. However, an increasing amount of plastic is distributed into the oceans, and as such contaminating macroalgal beds. One of the major plastic contaminants is nylon 6 derived from discarded fishing gear, though an increasing amount of alternative nylon polymers, derived from fabrics, are also observed. This study aimed to assess the effect of these nylon contaminants on the hydrothermal liquefaction of Fucus serratus. The hydrothermal liquefaction (HTL) of macroalgae was undertaken at 350 °C for 10 min, with a range of nylon polymers (nylon 6, nylon 6/6, nylon 12 and nylon 6/12), in the blend of 5, 20 and 50 wt.% nylon to biomass; 17 wt.% biocrude was achieved from a 50% blend of nylon 6 with F. serratus. In addition, nylon 6 completely broke down in the system producing the monomer caprolactam. The suitability of converting fishing gear was further demonstrated by conversion of actual fishing line (nylon 6) with the macroalgae, producing an array of products. The alternative nylon polymer blends were less reactive, with only 54% of the nylon 6/6 breaking down under the HTL conditions, forming cyclopentanone which distributed into the biocrude phase. Nylon 6/12 and nylon 12 were even less reactive, and only traces of the monomer cyclododecanone were observed in the biocrude phase. This study demonstrates that while nylon 6 derived from fishing gear can be effectively integrated into a macroalgal biorefinery, alternative nylon polymers from other sectors are too stable to be converted under these conditions and present a real challenge to a macroalgal biorefinery.


Sign in / Sign up

Export Citation Format

Share Document