Quantum Dots of 1T Phase Transitional Metal Dichalcogenides GeneratedviaElectrochemical Li Intercalation

ACS Nano ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. 308-316 ◽  
Author(s):  
Wenshu Chen ◽  
Jiajun Gu ◽  
Qinglei Liu ◽  
Ruichun Luo ◽  
Lulu Yao ◽  
...  
Nanophotonics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1811-1829 ◽  
Author(s):  
Zhipeng Li ◽  
Tianmeng Wang ◽  
Shengnan Miao ◽  
Zhen Lian ◽  
Su-Fei Shi

AbstractMonolayer transitional metal dichalcogenides (TMDCs), a new class of atomically thin semiconductor, respond to optical excitation strongly with robust excitons, which stem from the reduced screening in two dimensions. These excitons also possess a new quantum degree of freedom known as valley spin, which has inspired the field of valleytronics. The strongly enhanced Coulomb interaction allows the exciton to bind with other particles to form new excitonic states. However, despite the discovery of trions, most of the excitonic states in monolayer TMDCs remain elusive until recently, when new light was shed into the fascinating excitonic fine structures with drastically improved sample quality through boron nitride encapsulation. Here, we review the latest research progress on fine structures of excitonic states in monolayer TMDCs, with a focus on tungsten-based TMDCs and related alloy. Many of the new excitonic complexes inherit the valley degree of freedom, and the valley-polarized dark excitonic states are of particular interest because of their long lifetime and possible long valley coherence time. The capability of resolving the excitonic fine structures also enables the investigation of exciton–phonon interactions. The knowledge of the interlayer between excitons and other particles not only advances our understanding of many-body effects in the monolayer TMDCs but also provides guidance on future applications based on TMDCs.


Nanomaterials ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 538
Author(s):  
Pengpeng Ren ◽  
Wenfei Zhang ◽  
Yiqun Ni ◽  
Di Xiao ◽  
Honghao Wan ◽  
...  

Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) quantum dots (QDs) are the vanguard due to their unique properties. In this work, WSe2 QDs were fabricated via one step ultrasonic probe sonication. Excitation wavelength dependent photoluminescence (PL) is observed from WSe2 QDs. Room-temperature lasing emission which benefits from 3.7 times enhancement of PL intensity by thermal treatment at ~470 nm was achieved with an excitation threshold value of ~3.5 kW/cm2 in a Fabry–Perot laser cavity. To the best of our knowledge, this is the first demonstration of lasing emission from TMDCs QDs. This indicates that TMDCs QDs are a superior candidate as a new type of laser gain medium.


2021 ◽  
Author(s):  
Denice Feria ◽  
Sonia Sharma ◽  
Yu-Ting Chen ◽  
Zhi-Ying Weng ◽  
Kuo-Pin Chiu ◽  
...  

Abstract Understanding the mechanism of the negative differential resistance (NDR) in transition metal dichalcogenides is essential for fundamental science and the development of electronic devices. Here, the NDR of the current-voltage characteristics was observed based on the glutamine-functionalized WS2 quantum dots (QDs). The NDR effect can be adjusted by varying the applied voltage range, air pressure, surrounding gases, and relative humidity. A peak-to-valley current ratio as high as 6.3 has been achieved at room temperature. Carrier trapping induced by water molecules was suggested to be responsible for the mechanism of the NDR in the glutamine-functionalized WS2 QDs. Investigating the NDR of WS2 QDs may promote the development of memory applications and emerging devices.


2021 ◽  
Vol 104 (19) ◽  
Author(s):  
Abdulmenaf Altıntaş ◽  
Maciej Bieniek ◽  
Amintor Dusko ◽  
Marek Korkusiński ◽  
Jarosław Pawłowski ◽  
...  

ChemPhysChem ◽  
2015 ◽  
Vol 16 (11) ◽  
pp. 2304-2306 ◽  
Author(s):  
Adeline Huiling Loo ◽  
Alessandra Bonanni ◽  
Zdenek Sofer ◽  
Martin Pumera

Nanophotonics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 2107-2124 ◽  
Author(s):  
Haitao Chen ◽  
Cong Wang ◽  
Hao Ouyang ◽  
Yufeng Song ◽  
Tian Jiang

AbstractOptical modulation technique plays a crucial role in photonics technologies, and there is an ever-increasing demand for broadband and ultrafast optical modulation in the era of artificial intelligence. All-optical modulation is known to be able to operate in an ultrafast way and has a broadband response, showing great potential in applications for ultrafast information processing and photonic computing. Two-dimensional (2D) materials with exotic optoelectronic properties bring tremendous new opportunities for all-optical modulators with excellent performance, which have attracted lots of attention recently. In this review, we cover the state-of-art all-optical modulation based on 2D materials, including graphene, transitional metal dichalcogenides, phosphorus, and other novel 2D materials. We present the operations mechanism of different types of all-optical modulators with various configurations, such as fiber-integrated and free-space ones. We also discuss the challenges and opportunities faced by all-optical modulation, as well as offer some future perspectives for the development of all-optical modulation based on 2D materials.


Sign in / Sign up

Export Citation Format

Share Document