Clear Wood toward High-Performance Building Materials

ACS Nano ◽  
2019 ◽  
Vol 13 (9) ◽  
pp. 9993-10001 ◽  
Author(s):  
Chao Jia ◽  
Chaoji Chen ◽  
Ruiyu Mi ◽  
Tian Li ◽  
Jiaqi Dai ◽  
...  
FlatChem ◽  
2021 ◽  
Vol 26 ◽  
pp. 100234
Author(s):  
Anna-Marie Lauermannová ◽  
Ivana Faltysová ◽  
Michal Lojka ◽  
Filip Antončík ◽  
David Sedmidubský ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 4640
Author(s):  
Seung-Yeoun Choi ◽  
Sean-Hay Kim

New functions and requirements of high performance building (HPB) being added and several regulations and certification conditions being reinforced steadily make it harder for designers to decide HPB designs alone. Although many designers wish to rely on HPB consultants for advice, not all projects can afford consultants. We expect that, in the near future, computer aids such as design expert systems can help designers by providing the role of HPB consultants. The effectiveness and success or failure of the solution offered by the expert system must be affected by the quality, systemic structure, resilience, and applicability of expert knowledge. This study aims to set the problem definition and category required for existing HPB designs, and to find the knowledge acquisition and representation methods that are the most suitable to the design expert system based on the literature review. The HPB design literature from the past 10 years revealed that the greatest features of knowledge acquisition and representation are the increasing proportion of computer-based data analytics using machine learning algorithms, whereas rules, frames, and cognitive maps that are derived from heuristics are conventional representation formalisms of traditional expert systems. Moreover, data analytics are applied to not only literally raw data from observations and measurement, but also discrete processed data as the results of simulations or composite rules in order to derive latent rule, hidden pattern, and trends. Furthermore, there is a clear trend that designers prefer the method that decision support tools propose a solution directly as optimizer does. This is due to the lack of resources and time for designers to execute performance evaluation and analysis of alternatives by themselves, even if they have sufficient experience on the HPB. However, because the risk and responsibility for the final design should be taken by designers solely, they are afraid of convenient black box decision making provided by machines. If the process of using the primary knowledge in which frame to reach the solution and how the solution is derived are transparently open to the designers, the solution made by the design expert system will be able to obtain more trust from designers. This transparent decision support process would comply with the requirement specified in a recent design study that designers prefer flexible design environments that give more creative control and freedom over design options, when compared to an automated optimization approach.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 804 ◽  
Author(s):  
Hyunsook Shim ◽  
Taeyeon Kim ◽  
Gyunghyun Choi

As quality of life has improved, the need for high-performance building materials that meet specific technological requirements has increased. Residential environments have also changed owing to climate change. A technology roadmap could define and systematically reflect a timeline for the development of future core technologies. The purpose of this research is to build a technology roadmap that could be utilized for the development of technology in the eco-friendly building material industry. This research is composed of multiple analysis processes—patent analysis, Delphi, and analytic hierarchy process analysis—that minimize the uncertainty caused by the lack of information in the eco-friendly construction industry by securing objective future forecast data. Subsequently, the quality function deployment test is implemented to verify the feasibility of the technology roadmap that is constructed. The design of various types of functional, low-carbon building materials could reduce carbon emissions and save energy by ensuring a hazardous-material-free market in the future. This design development roadmap is required to complement this technology roadmap.


Author(s):  
Малыхина ◽  
Irina Malykhina ◽  
Брежнев ◽  
Aleksey Brezhnev

Today, the domestic economy is going through difficult times associated with the instability of the geopolitical situation in the world, a strengthening of the sanctions policy of Western countries to-wards the Russian Federation, limited access to foreign investment and other factors that directly affect the speed and quality of economic development of the state. However, Russia today is on the path of innovative development, so the generation and usage in industry innovation is a priority. Recognition of necessity of innovative development of Russia determines the importance of improving and obtaining good results in such a relatively young activities for our country as project management and engineering. In this paper, the influence of project management as a form of innovative management in the development of the engineering centre, based at the University. Steady growth in demand for engineering services, which contribute to qualitative and effective implemen-tation of the latest technological solutions in production, largely due to the significant complexity of scientific results in scientific, research and innovation. Therefore, the use of the principles and methods of project management creates the conditions for high performance implementation of innovation projects, which include the creation and development of engineering centers, including in the field of building materials industry.


Author(s):  
George Damoulakis ◽  
Mohamad Jafari-Gukeh ◽  
Theodore P. Koukoravas ◽  
Constantine Megaridis

Abstract The characterization "thermal diode" has been used to portray systems that spread heat very efficiently in a specific direction but obstruct it from flowing in the opposite direction. In this study, a planar vapor chamber with a wickless, wettability-patterned condenser is fabricated and tested as a thermal diode. When the chamber operates in the forward mode, heat is naturally driven away from the heat source; in the reverse mode, the system blocks heat backflow, thus working as a thermal diode. The low-profile assembly takes advantage of the phase-changing properties of water inside a closed loop comprised of a classical thin-wick evaporator opposing a wickless wettability-patterned condenser, when the chamber operates in the forward (heat-transporting) mode. The wettability patterned plate -when on the cooled side- enables spatial controlled dropwise and filmwise condensation and offers an efficient transport mechanism of the condensed medium on superhydrophilic wedge tracks by way of capillary forces. The same chamber acts as a thermal blocker when the opposing wick-covered plate is on the cool side, trapping the liquid in the pores and blocking heat flow. With this system, thermal diodicities exceeding 20 have been achieved, and are tunable by altering the wettability pattern as needed for different purposes. The present vapor chamber - thermal diode design could be well-suited for an extensive range of thermal-management applications, ranging from aerospace, spacecraft, and construction building materials, to electronics protection, electronics packaging, refrigeration, thermal control during energy harvesting, thermal isolation, etc.


Sign in / Sign up

Export Citation Format

Share Document