scholarly journals Structure-Based Virtual Screening and Biochemical Validation to Discover a Potential Inhibitor of the SARS-CoV-2 Main Protease

ACS Omega ◽  
2020 ◽  
Vol 5 (51) ◽  
pp. 33151-33161
Author(s):  
Akshita Gupta ◽  
Chitra Rani ◽  
Pradeep Pant ◽  
Viswanathan Vijayan ◽  
Naval Vikram ◽  
...  
2020 ◽  
Vol 18 ◽  
Author(s):  
Debadash Panigrahi ◽  
Ganesh Prasad Mishra

Objective:: Recent pandemic caused by SARS-CoV-2 described in Wuhan China in December-2019 spread widely almost all the countries of the world. Corona virus (COVID-19) is causing the unexpected death of many peoples and severe economic loss in several countries. Virtual screening based on molecular docking, drug-likeness prediction, and in silico ADMET study has become an effective tool for the identification of small molecules as novel antiviral drugs to treat diseases. Methods:: In the current study, virtual screening was performed through molecular docking for identifying potent inhibitors against Mpro enzyme from the ZINC library for the possible treatment of COVID-19 pandemic. Interestingly, some compounds are identified as possible anti-covid-19 agents for future research. 350 compounds were screened based on their similarity score with reference compound X77 from ZINC data bank and were subjected to docking with crystal structure available of Mpro enzyme. These compounds were then filtered by their in silico ADME-Tox and drug-likeness prediction values. Result:: Out of these 350 screened compounds, 10 compounds were selected based on their docking score and best docked pose in comparison to the reference compound X77. In silico ADME-Tox and drug likeliness predictions of the top compounds were performed and found to be excellent results. All the 10 screened compounds showed significant binding pose with the target enzyme main protease (Mpro) enzyme and satisfactory pharmacokinetic and toxicological properties. Conclusion:: Based on results we can suggest that the identified compounds may be considered for therapeutic development against the COVID-19 virus and can be further evaluated for in vitro activity, preclinical, clinical studies and formulated in a suitable dosage form to maximize their bioavailability.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1004
Author(s):  
Mahmoud A. El Hassab ◽  
Mohamed Fares ◽  
Mohammed K. Abdel-Hamid Amin ◽  
Sara T. Al-Rashood ◽  
Amal Alharbi ◽  
...  

Since December 2019, the world has been facing the outbreak of the SARS-CoV-2 pandemic that has infected more than 149 million and killed 3.1 million people by 27 April 2021, according to WHO statistics. Safety measures and precautions taken by many countries seem insufficient, especially with no specific approved drugs against the virus. This has created an urgent need to fast track the development of new medication against the virus in order to alleviate the problem and meet public expectations. The SARS-CoV-2 3CL main protease (Mpro) is one of the most attractive targets in the virus life cycle, which is responsible for the processing of the viral polyprotein and is a key for the ribosomal translation of the SARS-CoV-2 genome. In this work, we targeted this enzyme through a structure-based drug design (SBDD) protocol, which aimed at the design of a new potential inhibitor for Mpro. The protocol involves three major steps: fragment-based drug design (FBDD), covalent docking and molecular dynamics (MD) simulation with the calculation of the designed molecule binding free energy at a high level of theory. The FBDD step identified five molecular fragments, which were linked via a suitable carbon linker, to construct our designed compound RMH148. The mode of binding and initial interactions between RMH148 and the enzyme active site was established in the second step of our protocol via covalent docking. The final step involved the use of MD simulations to test for the stability of the docked RMH148 into the Mpro active site and included precise calculations for potential interactions with active site residues and binding free energies. The results introduced RMH148 as a potential inhibitor for the SARS-CoV-2 Mpro enzyme, which was able to achieve various interactions with the enzyme and forms a highly stable complex at the active site even better than the co-crystalized reference.


2021 ◽  
Vol 14 (4) ◽  
pp. 357
Author(s):  
Magdi E. A. Zaki ◽  
Sami A. Al-Hussain ◽  
Vijay H. Masand ◽  
Siddhartha Akasapu ◽  
Sumit O. Bajaj ◽  
...  

Due to the genetic similarity between SARS-CoV-2 and SARS-CoV, the present work endeavored to derive a balanced Quantitative Structure−Activity Relationship (QSAR) model, molecular docking, and molecular dynamics (MD) simulation studies to identify novel molecules having inhibitory potential against the main protease (Mpro) of SARS-CoV-2. The QSAR analysis developed on multivariate GA–MLR (Genetic Algorithm–Multilinear Regression) model with acceptable statistical performance (R2 = 0.898, Q2loo = 0.859, etc.). QSAR analysis attributed the good correlation with different types of atoms like non-ring Carbons and Nitrogens, amide Nitrogen, sp2-hybridized Carbons, etc. Thus, the QSAR model has a good balance of qualitative and quantitative requirements (balanced QSAR model) and satisfies the Organisation for Economic Co-operation and Development (OECD) guidelines. After that, a QSAR-based virtual screening of 26,467 food compounds and 360 heterocyclic variants of molecule 1 (benzotriazole–indole hybrid molecule) helped to identify promising hits. Furthermore, the molecular docking and molecular dynamics (MD) simulations of Mpro with molecule 1 recognized the structural motifs with significant stability. Molecular docking and QSAR provided consensus and complementary results. The validated analyses are capable of optimizing a drug/lead candidate for better inhibitory activity against the main protease of SARS-CoV-2.


RSC Advances ◽  
2021 ◽  
Vol 11 (17) ◽  
pp. 10027-10042 ◽  
Author(s):  
Ayman Abo Elmaaty ◽  
Radwan Alnajjar ◽  
Mohammed I. A. Hamed ◽  
Muhammad Khattab ◽  
Mohamed M. Khalifa ◽  
...  

The global breakout of COVID-19 and raised death toll has prompted scientists to develop novel drugs capable of inhibiting SARS-CoV-2.


2021 ◽  
pp. 1-7
Author(s):  
Misbaudeen Abdul-Hammed ◽  
Ibrahim Olaide Adedotun ◽  
Monsurat Olajide ◽  
Christianah Otoame Irabor ◽  
Tolulope Irapada Afolabi ◽  
...  

2021 ◽  
Vol 01 (01) ◽  
pp. 01-08
Author(s):  
Eustace Berinyuy ◽  
◽  
Jonathan Ibrahim ◽  
Blessing Alozieuwa

Despite the growing scientific interest in finding effective treatment, SARS-CoV-2 virus remains a global major health burden and public health emergency. SARS-CoV main protease (Mpro) also known as chymotrypsin-like protease (3CLpro) is an important protein identified to be vital for SARS-CoV-2 survival. However, to date, there are no clinically approved drugs or antibodies specific for SARS-CoV-2. In the present study, we evaluated the interaction of 3CLpro with azadirachtin-A a bioactive compound from Azadiracta indica using in silico molecular docking study. Our results revealed that Azadiractin A docked well into the binding cavity of 3CLproSARS-CoV-2 with binding affinities ranges between -6.3 and -5.20 kcal/mol, and Pkd of 5.82~6.10 for the ten best binding modes. Azadiractin interacted with the active site of 3CLpro-SARS-CoV-2 by 2 conventional hydrogen bonding to HIS163 and GLU166, C-H interactions with HIS127, and alkyl interaction with PRO168 of the 3CLpro-SARS-CoV-2. We also found that the Azadiractin-A_3CLpro-SARS-CoV-2 complex is stabilized by various Vander wall forces with ASN142, LEU141, PHE140, MET165, GLN189, LEU167, THR190, and ALA191. In conclusion, our results suggested that Azadirachtin-A could be a potential inhibitor of SARS-CoV-2 main protease, thus worthy of further preclinical study.


2021 ◽  
Author(s):  
Guillem Macip ◽  
Pol Garcia‐Segura ◽  
Júlia Mestres‐Truyol ◽  
Bryan Saldivar‐Espinoza ◽  
María José Ojeda‐Montes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document