scholarly journals Preparation and Characterization of Poly(butylene succinate)/Polylactide Blends for Fused Deposition Modeling 3D Printing

ACS Omega ◽  
2018 ◽  
Vol 3 (10) ◽  
pp. 14309-14317 ◽  
Author(s):  
Qing Ou-Yang ◽  
Baohua Guo ◽  
Jun Xu
2019 ◽  
Vol 14 (51) ◽  
pp. 534-540 ◽  
Author(s):  
Joseph Marae Djouda ◽  
Donato Gallittelli ◽  
Marouene Zouaoui ◽  
Ali Makke ◽  
Julien Gardan ◽  
...  

Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


2021 ◽  
Vol 14 (2) ◽  
pp. 143
Author(s):  
Julius Krause ◽  
Laura Müller ◽  
Dorota Sarwinska ◽  
Anne Seidlitz ◽  
Malgorzata Sznitowska ◽  
...  

In the treatment of pediatric diseases, suitable dosages and dosage forms are often not available for an adequate therapy. The use of innovative additive manufacturing techniques offers the possibility of producing pediatric dosage forms. In this study, the production of mini tablets using fused deposition modeling (FDM)-based 3D printing was investigated. Two pediatric drugs, caffeine and propranolol hydrochloride, were successfully processed into filaments using hyprolose and hypromellose as polymers. Subsequently, mini tablets with diameters between 1.5 and 4.0 mm were printed and characterized using optical and thermal analysis methods. By varying the number of mini tablets applied and by varying the diameter, we were able to achieve different release behaviors. This work highlights the potential value of FDM 3D printing for the on-demand production of patient individualized, small-scale batches of pediatric dosage forms.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 590
Author(s):  
Tim Feuerbach ◽  
Markus Thommes

The filament is the most widespread feedstock material form used for fused deposition modeling printers. Filaments must be manufactured with tight dimensional tolerances, both to be processable in the hot-end and to obtain printed objects of high quality. The ability to successfully feed the filament into the printer is also related to the mechanical properties of the filament, which are often insufficient for pharmaceutically relevant excipients. In the scope of this work, an 8 mm single screw hot-end was designed and characterized, which allows direct printing of materials from their powder form and does not require an intermediate filament. The capability of the hot-end to increase the range of applicable excipients to fused deposition modeling was demonstrated by processing and printing several excipients that are not suitable for fused deposition modeling in their filament forms, such as ethylene vinyl acetate and poly(1-vinylpyrrolidone-co-vinyl acetate). The conveying characteristic of the screw was investigated experimentally with all materials and was in agreement with an established model from literature. The complete design information, such as the screw geometry and the hot-end dimensions, is provided in this work.


Author(s):  
Arash Alex Mazhari ◽  
Randall Ticknor ◽  
Sean Swei ◽  
Stanley Krzesniak ◽  
Mircea Teodorescu

AbstractThe sensitivity of additive manufacturing (AM) to the variability of feedstock quality, machine calibration, and accuracy drives the need for frequent characterization of fabricated objects for a robust material process. The constant testing is fiscally and logistically intensive, often requiring coupons that are manufactured and tested in independent facilities. As a step toward integrating testing and characterization into the AM process while reducing cost, we propose the automated testing and characterization of AM (ATCAM). ATCAM is configured for fused deposition modeling (FDM) and introduces the concept of dynamic coupons to generate large quantities of basic AM samples. An in situ actuator is printed on the build surface to deploy coupons through impact, which is sensed by a load cell system utilizing machine learning (ML) to correlate AM data. We test ATCAM’s ability to distinguish the quality of three PLA feedstock at differing price points by generating and comparing 3000 dynamic coupons in 10 repetitions of 100 coupon cycles per material. ATCAM correlated the quality of each feedstock and visualized fatigue of in situ actuators over each testing cycle. Three ML algorithms were then compared, with Gradient Boost regression demonstrating a 71% correlation of dynamic coupons to their parent feedstock and provided confidence for the quality of AM data ATCAM generates.


2021 ◽  
Vol 896 ◽  
pp. 29-37
Author(s):  
Ján Milde ◽  
František Jurina ◽  
Jozef Peterka ◽  
Patrik Dobrovszký ◽  
Jakub Hrbál ◽  
...  

The article focused on the influence of part orientation on the surface roughness of cuboid parts during the process of fabricating by FDM technology. The components, in this case, is simple cuboid part with the dimensions 15 mm x 15mm x 30 mm. A geometrical model is defined that considers the shape of the material filaments after deposition, to define a theoretical roughness profile, for a certain print orientation angle. Five different print orientations in the X-axis of the cuboid part were set: 0°, 30°, 45°, 60°, and 90°. According to previous research in the field of FDM technology by the author, the internal structure (infill) was set at the value of 70%. The method of 3D printing was the Fused Deposition Modeling (FDM) and the material used in this research was thermoplastic ABS (Acrylonitrile butadiene styrene). For each setting, there were five specimens (twenty five prints in total). Prints were fabricated on a Zortrax M200 3D printer. After the 3D printing, the surface “A” was investigated by portable surface roughness tester Mitutoyo SJ-210. Surface roughness in the article is shown in the form of graphs (Fig.7). Results show increase in part roughness with increasing degree of part orientation. When the direction of applied layers on the measured surface was horizontal, significant improvement in surface roughness was observed. Findings in this paper can be taken into consideration when designing parts, as they can contribute in achieving lower surface roughness values.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Reverson Fernandes Quero ◽  
Gessica Domingos Silveira ◽  
Jose Alberto Fracassi da Silva ◽  
Dosil Pereira de Jesus

The fabrication of microfluidic devices through Fused Deposition Modeling (FDM) 3D printing has faced several challenges, mainly regarding obtaining microchannels with suitable transparency and sizes. Thus, the use of this...


Sign in / Sign up

Export Citation Format

Share Document