A Mussel-Inspired Antibacterial Hydrogel with High Cell Affinity, Toughness, Self-Healing, and Recycling Properties for Wound Healing

2021 ◽  
Vol 9 (8) ◽  
pp. 3070-3082 ◽  
Author(s):  
Xueyong Deng ◽  
Bingxue Huang ◽  
Qunhao Wang ◽  
Wanlin Wu ◽  
Phil Coates ◽  
...  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jiahui He ◽  
Zixi Zhang ◽  
Yutong Yang ◽  
Fenggang Ren ◽  
Jipeng Li ◽  
...  

AbstractEndoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) are well-established therapeutics for gastrointestinal neoplasias, but complications after EMR/ESD, including bleeding and perforation, result in additional treatment morbidity and even threaten the lives of patients. Thus, designing biomaterials to treat gastric bleeding and wound healing after endoscopic treatment is highly desired and remains a challenge. Herein, a series of injectable pH-responsive self-healing adhesive hydrogels based on acryloyl-6-aminocaproic acid (AA) and AA-g-N-hydroxysuccinimide (AA-NHS) were developed, and their great potential as endoscopic sprayable bioadhesive materials to efficiently stop hemorrhage and promote the wound healing process was further demonstrated in a swine gastric hemorrhage/wound model. The hydrogels showed a suitable gelation time, an autonomous and efficient self-healing capacity, hemostatic properties, and good biocompatibility. With the introduction of AA-NHS as a micro-cross-linker, the hydrogels exhibited enhanced adhesive strength. A swine gastric hemorrhage in vivo model demonstrated that the hydrogels showed good hemostatic performance by stopping acute arterial bleeding and preventing delayed bleeding. A gastric wound model indicated that the hydrogels showed excellent treatment effects with significantly enhanced wound healing with type I collagen deposition, α-SMA expression, and blood vessel formation. These injectable self-healing adhesive hydrogels exhibited great potential to treat gastric wounds after endoscopic treatment.


Author(s):  
Hongyun Xuan ◽  
Shuyuan Wu ◽  
Simiao Fei ◽  
Biyun Li ◽  
Yumin Yang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (15) ◽  
pp. 6945
Author(s):  
Chukwuma O. Agubata ◽  
Cynthia C. Mbaoji ◽  
Ifeanyi T. Nzekwe ◽  
César Saldías ◽  
David Díaz Díaz

In this work, a biohydrogel based on alginate and dynamic covalent B-O bonds, and derived composites, has been evaluated for wound healing applications. In particular, a phenylboronic acid–alginate (PBA-Alg) complex was synthesized by coupling 3-aminophenylboronic acid onto alginate, and used to prepare varied concentrations of hydrogels and silicate-based nanocomposites in PBS. The resulting hydrogels were characterized in terms of interfacial tension, moisture uptake and loss, interaction with fresh acid-soluble collagen, self-healing ability, effects on blood clotting and wound healing. The interfacial tension between the hydrogels and biorelevant fluids was low and moisture loss of 55%–60% was evident without uptake from the environment. The components of the hydrogels and their mixtures with collagen were found to be compatible. These hydrogels showed efficient self-healing and thixotropic behavior, and the animals in the treatment groups displayed blood clotting times between 9.1 min and 10.7 min. In contrast, the composites showed much longer or shorter clotting times depending on the silicate content. A significant improvement in wound healing was observed in 3% w/v PBA-Alg formulations. Overall, the PBA-Alg hydrogels exhibit self-healing dynamic covalent interactions and may be useful in dressings for incision wounds.


2021 ◽  
Vol 30 (Sup9a) ◽  
pp. IVi-IVx
Author(s):  
Chukwuma O Agubata ◽  
Mary A Mbah ◽  
Paul A Akpa ◽  
Godwin Ugwu

Aim: Self-healing, swellable and biodegradable polymers are vital materials that may facilitate the different stages of wound healing. The aim of this research was to prepare wound healing films using self-healing polyvinyl alcohol (PVA), swellable hydroxypropyl methylcellulose (HPMC), biodegradable polyglycolic acid (PGA) sutures and ciprofloxacin antibiotic for improved treatment outcome. Methods: Films were formulated through aqueous-based mixing of varying amounts of polyvinyl alcohol (10–20% weight/weight (w/w)) and hydroxypropyl methylcellulose (0.5, 1% w/w) with fixed quantities of ciprofloxacin. PGA sutures were placed as grids within the wet mixtures of the polymers and ciprofloxacin, and thereafter products were air dried. The formulated films were evaluated for swelling ratio, breaking elongation, folding endurance, moisture uptake and loss, compatibility and in vitro antibiotic release. Furthermore, in vivo wound healing was studied using excision model and histopathological examinations. Results: Swelling ratios were above 1.0 and the films were minimally stretchable, with folding endurance greater than 500. Films were stable while moisture uptake and loss were observed to be less than 30%. Among the optimised hydrogel batches, those containing 10% w/w PVA and 1% w/w HPMC with no PGA showed the highest drug release of 73%, whereas the batches with higher PGA content showed higher percentage wound size reduction with minimal scar. The completeness of wound healing with batches containing PVA, HPMC, ciprofloxacin and PGA, along with the standard, is evident considering the massive cornification, regeneration of the epithelial front and stratum spinosum. Conclusion: The findings show that polymer-based multifunctional composite films are suitable for use as dressings for improved wound healing.


Theranostics ◽  
2021 ◽  
Vol 11 (20) ◽  
pp. 10174-10175
Author(s):  
Chenggui Wang ◽  
Min Wang ◽  
Tianzhen Xu ◽  
Xingxing Zhang ◽  
Cai Lin ◽  
...  

Author(s):  
T. S. Shanmugarajan ◽  
N. Kalai Selvan ◽  
Varuna Naga Venkata Arjun Uppuluri

Full-thickness burns pose a major challenge for clinicians to handle because of their restricted self-healing ability. Even though several approaches have been implemented for repairing these burnt skin tissue defects, all of them had unsatisfactory outcomes. Moreover, during recent years, skin tissue engineering techniques have emerged as a promising approach to improve skin tissue regeneration and overcome the shortcomings of the traditional approaches. Although previous literatures report the wound healing effects of the squalene oil, in the current study, for the first time, we developed a squalene-loaded emulgel-based scaffold as a novel approach for potential skin regeneration. This squalene-loaded agar-based emulgel scaffold was fabricated by using physical cross-linking technique using lecithin as an emulsifier. Characterization studies such as X-ray diffraction, Fourier-transform infrared spectroscopy, and field emission scanning electron microscopy revealed the amorphous nature, chemical interactions, and cross-linked capabilities of the developed emulgel scaffold. The squalene-loaded emulgel scaffold showed excellent wound contraction when compared with the agar gel and negative control. In case of the histopathology and recent immunohistochemistry findings, it was clearly evidenced that squalene-loaded emulgel promoted faster rate of the revascularization and macrophage polarization in order to enhance the burn wound healing. Moreover, the findings also revealed that the incorporation of squalene oil into the formulation enhances collagen deposition and accelerates the burnt skin tissue regeneration process. Finally, we conclude that the squalene-loaded emulgel scaffold could be an effective formulation used in the treatment of the burnt skin tissue defects.


2020 ◽  
Vol 8 (35) ◽  
pp. 7966-7976
Author(s):  
Xiajie Lin ◽  
Yamin Li ◽  
Wei Luo ◽  
Lan Xiao ◽  
Zeren Zhang ◽  
...  

Nanohybrids containing amino acid are doped into biodegradable nanofibrous membranes, which improves the cell affinity, the migration and growth of fibroblasts, and the neovascularization capacity, comprehensively accelerating a rapid wound healing.


Sign in / Sign up

Export Citation Format

Share Document