scholarly journals Molecular electrocatalysts transform CO into C2+ products effectively in a flow cell

2020 ◽  
Author(s):  
Shaoxuan Ren ◽  
Arthur Fink ◽  
Eric Lees ◽  
Zishuai Zhang ◽  
Wen Yu Wu ◽  
...  

Abstract The highest performance flow cells capable of electrolytically converting CO2 into higher value chemicals and fuels pass a concentrated hydroxide electrolyte across the cathode. A major problem for CO2 electrolysis is that this strongly alkaline medium converts the majority of CO2 into unreactive HCO3– and CO32– rather than CO2 reduction reaction (CO2RR) products. The electrolysis of CO (instead of CO2) does not suffer from this same problem because CO does not react with hydroxide. Moreover, CO can be more readily converted into products containing two or more carbon atoms (i.e., C2+ products). While several solid-state electrocatalysts have proven competent at converting CO into C2+ products, we demonstrate here that molecular electrocatalysts are also effective at mediating this transformation in a flow cell. Using a molecular copper phthalocyanine (CuPc) electrocatalyst, CO was electrolyzed into C2+ products at high rates of product formation (i.e., current densities J ≥200 mA/cm2), and at high Faradaic efficiencies for C2+ production (FEC2+; 72% at 200 mA/cm2). These findings present a new class of electrocatalysts for making carbon-neutral chemicals and fuels.

2021 ◽  
Author(s):  
Shaoxuan Ren ◽  
Zishuai Zhang ◽  
Eric Lees ◽  
Arthur Fink ◽  
Luke Melo ◽  
...  

Abstract The highest performance flow cells capable of electrolytically converting CO2 into higher value chemicals and fuels pass a concentrated hydroxide electrolyte across the cathode. A major problem for CO2 electrolysis is that this strongly alkaline medium converts the majority of CO2 into unreactive HCO3– and CO32– rather than CO2 reduction reaction (CO2RR) products. The electrolysis of CO (instead of CO2) does not suffer from this same problem because CO does not react with hydroxide. Moreover, CO can be more readily converted into products containing two or more carbon atoms (i.e., C2+ products). While several solid-state electrocatalysts have proven competent at converting CO into C2+ products, we demonstrate here that molecular electrocatalysts are also effective at mediating this transformation in a flow cell. Using a molecular copper phthalocyanine (CuPc) electrocatalyst, CO was electrolyzed into C2+ products at high rates of product formation (i.e., current densities J ≥200 mA/cm2), and at high Faradaic efficiencies for C2+ production (FEC2+; 72% at 200 mA/cm2). These findings present a new class of electrocatalysts for making carbon-neutral chemicals and fuels.


Author(s):  
Min Zhang ◽  
Wenbo Wei ◽  
Shenghua Zhou ◽  
Dong-Dong Ma ◽  
Aihui Cao ◽  
...  

Electrochemical CO2 reduction reaction (CO2RR) to value-added and readily collectable liquid products is promising but remains a great challenge due to the lack of efficient and robust electrocatalysts. Herein, a...


2021 ◽  
Author(s):  
Kejun Chen ◽  
Maoqi Cao ◽  
Yiyang Lin ◽  
Junwei Fu ◽  
Hanxiao Liao ◽  
...  

Abstract Designing efficient catalysts with high activity and selectivity is desirable and challenging for CO2 reduction reaction (CO2RR). Nickel phthalocyanine (NiPc) is a promising molecule catalyst for CO2RR. However, the pristine NiPc suffers from poor CO2 adsorption and activation due to its electron deficiency of Ni–N4 site, which leads to inferior activity and stability during CO2RR. Here, we develop a substituent-induced electronic localization strategy to improve CO2 adsorption and activation, and thus catalytic performance. Theoretic calculations and experimental results indicate that the electronic localization on the Ni site induced by electron-donating substituents (hydroxyl or amino) of NiPc greatly enhances the CO2 adsorption and activation, which is positively associated with the electron-donating abilities of substituents. Employing the optimal catalyst of amino-substituted NiPc to catalyze CO2 into CO in flow cell can achieve an ultrahigh activity and selectivity of 99.8% at the current densities up to 400 mA cm-2. This work offers a novel strategy to regulate the electronic structure of the active site by introducing substituents for highly efficient CO2RR.


2018 ◽  
Author(s):  
Thomas Burdyny ◽  
Wilson A. Smith

The presented modelling results in this article show that electrochemical CO2 reduction performed at commercially-relevant current densities will ultimately lead to locally alkaline reaction conditions regardless of the electrolyte, configuration and reasonable mass transport scenarios. Discussed in detail are the large implications that this result has for the CO2 reduction reaction itself, and the current way in which catalysts are designed and tested in different electrochemical cell architectures.


2018 ◽  
Author(s):  
Thomas Burdyny ◽  
Wilson A. Smith

The presented modelling results in this article show that electrochemical CO2 reduction performed at commercially-relevant current densities will ultimately lead to locally alkaline reaction conditions regardless of the electrolyte, configuration and reasonable mass transport scenarios. Discussed in detail are the large implications that this result has for the CO2 reduction reaction itself, and the current way in which catalysts are designed and tested in different electrochemical cell architectures.


2019 ◽  
Author(s):  
Sahithi Ananthaneni ◽  
Rees Rankin

<div>Electrochemical reduction of CO2 to useful chemical and fuels in an energy efficient way is currently an expensive and inefficient process. Recently, low-cost transition metal-carbides (TMCs) are proven to exhibit similar electronic structure similarities to Platinum-Group-Metal (PGM) catalysts and hence can be good substitutes for some important reduction reactions. In this work, we test graphenesupported WC (Tungsten Carbide) nanocluster as an electrocatalyst for the CO2 reduction reaction. Specifically, we perform DFT studies to understand various possible reaction mechanisms and determine the lowest thermodynamic energy landscape of CO2 reduction to various products such as CO, HCOOH, CH3OH, and CH4. This in-depth study of reaction energetics could lead to improvements and develop more efficient electrocatalysts for CO2 reduction.<br></div>


Author(s):  
Yingchun Zhang ◽  
Changsheng Cao ◽  
Xintao Wu ◽  
Qi-Long Zhu

Bismuth (Bi)-based nanomaterials are considered as the promising electrocatalysts for electrocatalytic CO2 reduction reaction (CO2RR), but it is challenging to achieve high current density and selectivity in a wide potential...


Sign in / Sign up

Export Citation Format

Share Document