Recovery of Functionalized Rubber from Waste Tires by Radical Devulcanization

Author(s):  
Jean-Nicolas Noël ◽  
Annie-Claude Gaumont ◽  
Jean-François Pilard ◽  
Isabelle Dez
Keyword(s):  
ACS Omega ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 5479-5484
Author(s):  
Dan-lu Pan ◽  
Wei-ting Jiang ◽  
Rui-tang Guo ◽  
Yang Huang ◽  
Wei-guo Pan
Keyword(s):  

2019 ◽  
Vol 276 ◽  
pp. 01003 ◽  
Author(s):  
Aneel Kumar Hindu ◽  
Tauha Hussain Ali ◽  
Agha Faisal Habib

The increase in volume of vehicles ultimately increases the number of waste tires. The proper disposal or reutilization of waste tires is a challenge. This study is aimed to utilize the steel fibers of waste tires as reinforcement in concrete. Concrete cylinders were cast with addition of different percentages of steel fibers (0-2%) and length (10-20 mm). The fresh and hard properties of concrete reinforced with different percentages of steel fibers and lengths were observed. It is seen that splitting tensile strength of concrete increased with increase in the length of fiber and with the increase in the percentage of fiber. The inclusion of the fibers in concrete causes the reduction in the workability of concrete.


2021 ◽  
Vol 11 (6) ◽  
pp. 2725
Author(s):  
Jakub Svoboda ◽  
Tomáš Dvorský ◽  
Vojtěch Václavík ◽  
Jakub Charvát ◽  
Kateřina Máčalová ◽  
...  

This article describes an experimental study aimed at investigating the potential use of recycled rubber granulate from waste tires of fractions 0/1 and 1/3 mm in cement composites as a 100% replacement for natural aggregates. The use of waste in the development and production of new building materials represents an important aspect for the sustainability and protection of the environment. This article is focused on the sound-absorbing and thermal-insulating properties of experimental cement composites based on recycled rubber from waste tires. The article describes the grain characteristics of recycled rubber, sound absorption capacity, thermal conductivity and strength characteristics. The results of this research show that the total replacement of natural aggregate with recycled rubber in cement composites is possible. Replacing natural aggregate with recycled rubber has significantly improved the thermal and acoustic properties of the prepared cement composites, however, at the same time; there was also the expected decrease in the strength characteristics due to the elasticity of rubber.


Author(s):  
Lisa Djuandhi ◽  
Vaibhav Gaikwad ◽  
Bruce C. C. Cowie ◽  
Veena Sahajwalla ◽  
Neeraj Sharma

2021 ◽  
Vol 11 (14) ◽  
pp. 6342
Author(s):  
Reyna Berenice González-González ◽  
Nadia Ruiz-Gómez ◽  
Gloria Gea ◽  
Matias Vazquez-Pinon ◽  
Sergio O. Martinez-Chapa ◽  
...  

The problems related to the increase in the generation of discarded tires demonstrate the need for profitable, efficient, cost-effective, and sustainable processes for their waste management. In particular, the valorization of pyrolytic solids for energy storage applications is of interest. In this study, four processes were performed: (1) pyrolysis; (2) chemical activation and pyrolysis; (3) pyrolysis and physical activation; and (4) chemical activation, pyrolysis, and physical activation. The process consisting of chemical activation, pyrolysis, and physical activation yielded 52% solid material with the highest electrical conductivity (2.43 Ω–1 cm–1) and a surface area of 339 m2/g with an average pore size of 3.6 nm. In addition, it was found that pore size had a greater effect on the conductivity than surface area. Liquid and gas fraction compositions were modified by the presence of chemical activation: aromatization reactions were favored, and limonene was not observed in the liquid fraction, while an increase on the CH4 concentration caused an increment in the heating value of the gas fraction. It was demonstrated that chemical and physical activation enhance the properties of the pyrolytic solid product derived from waste tires that make it suitable for the partial substitution of materials for electric energy storage applications.


2018 ◽  
Vol 36 (5) ◽  
pp. 436-444 ◽  
Author(s):  
Xue Zhang ◽  
Hengxiang Li ◽  
Qing Cao ◽  
Li’e Jin ◽  
Fumeng Wang

The managing and recycling of waste tires has become a worldwide environmental challenge. Among the different disposal methods for waste tires, pyrolysis is regarded as a promising route. How to effectively enhance the added value of pyrolytic residue (PR) from waste tires is a matter of great concern. In this study, the PRs were treated with hydrochloric and hydrofluoric acids in turn under ultrasonic waves. The removal efficiency for the ash and sulfur was investigated. The pyrolytic carbon black (PCB) obtained after treating PR with acids was analyzed by X-ray fluorescence spectrophotometry, Fourier transform infrared spectrometry, X-ray diffractometry, laser Raman spectrometry, scanning electron microscopy, thermogravimetric (TG) analysis, and physisorption apparatus. The properties of PCB were compared with those of commercial carbon black (CCB) N326 and N339. Results showed PRs from waste tires were mainly composed of carbon, sulfur, and ash. The carbon in PCB was mainly from the CCB added during tire manufacture rather than from the pyrolysis of pure rubbers. The removal percentages for the ash and sulfur of PR are 98.33% (from 13.98 wt % down to 0.24 wt %) and 70.16% (from 1.81 wt % down to 0.54 wt %), respectively, in the entire process. The ash was mainly composed of metal oxides, sulfides, and silica. The surface properties, porosity, and morphology of the PCB were all close to those of N326. Therefore, PCB will be a potential alternative of N326 and reused in tire manufacture. This route successfully upgrades PR from waste tires to the high value-added CCB and greatly increases the overall efficiency of the waste tire pyrolysis industry.


Sign in / Sign up

Export Citation Format

Share Document