Revealing the Underlying Mechanisms of How Sodium Chloride Affects Short-Chain Fatty Acid Production from the Cofermentation of Waste Activated Sludge and Food Waste

2016 ◽  
Vol 4 (9) ◽  
pp. 4675-4684 ◽  
Author(s):  
Jianwei Zhao ◽  
Chang Zhang ◽  
Dongbo Wang ◽  
Xiaoming Li ◽  
Hongxue An ◽  
...  
2020 ◽  
Author(s):  
Georgina M Williams ◽  
Linda C Tapsell ◽  
Claire L O’Brien ◽  
Susan M Tosh ◽  
Eden M Barrett ◽  
...  

Abstract Context Cereal fiber modulates the gut microbiome and benefits metabolic health. The potential link between these effects is of interest.0 Objective The aim for this systematic review was to assess evidence surrounding the influence of cereal fiber intake on microbiome composition, microbiome diversity, short-chain fatty acid production, and risk factors for metabolic syndrome. Data Sources and Extraction The MEDLINE, PubMed, CINAHL, and Cochrane Library databases were searched systematically, and quality of studies was assessed using the Cochrane Risk of Bias 2.0 tool. Evidence relating to study design, dietary data collection, and outcomes was qualitatively synthesized on the basis of fiber type. Data Analysis Forty-six primary publications and 2 secondary analyses were included. Cereal fiber modulated the microbiome in most studies; however, taxonomic changes indicated high heterogeneity. Short-chain fatty acid production, microbiome diversity, and metabolic-related outcomes varied and did not always occur in parallel with microbiome changes. Poor dietary data were a further limitation. Conclusions Cereal fiber may modulate the gut microbiome; however, evidence of the link between this and metabolic outcomes is limited. Additional research is required with a focus on robust and consistent methodology. Systematic Review Registration PROSPERO registration no. CRD42018107117


Sign in / Sign up

Export Citation Format

Share Document