Visible Light CO2 Reduction to CH4 Using Hierarchical Yolk@shell TiO2–xHx Modified with Plasmonic Au–Pd Nanoparticles

2020 ◽  
Vol 8 (9) ◽  
pp. 3689-3696 ◽  
Author(s):  
Abolfazl Ziarati ◽  
Alireza Badiei ◽  
Rafael Luque ◽  
Massoud Dadras ◽  
Thomas Burgi
2021 ◽  
Author(s):  
Zhen Han ◽  
Yaomei Fu ◽  
Yingchao Zhang ◽  
Xiao Zhang ◽  
Xing Meng ◽  
...  

We designed and synthesized TVPT-MOFs, combined with g-C3N4, and the yield of CO2 reduction could reach 56 μmol·g−1·h−1.


2017 ◽  
Vol 198 ◽  
pp. 397-407 ◽  
Author(s):  
Tomoaki Takayama ◽  
Ko Sato ◽  
Takehiro Fujimura ◽  
Yuki Kojima ◽  
Akihide Iwase ◽  
...  

CuGaS2, (AgInS2)x–(ZnS)2−2x, Ag2ZnGeS4, Ni- or Pb-doped ZnS, (ZnS)0.9–(CuCl)0.1, and ZnGa0.5In1.5S4 showed activities for CO2 reduction to form CO and/or HCOOH in an aqueous solution containing K2SO3 and Na2S as electron donors under visible light irradiation. Among them, CuGaS2 and Ni-doped ZnS photocatalysts showed relatively high activities for CO and HCOOH formation, respectively. CuGaS2 was applied in a powdered Z-scheme system combining with reduced graphene oxide (RGO)-incorporated TiO2 as an O2-evolving photocatalyst. The powdered Z-scheme system produced CO from CO2 in addition to H2 and O2 due to water splitting. Oxygen evolution with an almost stoichiometric amount indicates that water was consumed as an electron donor in the Z-schematic CO2 reduction. Thus, we successfully demonstrated CO2 reduction of artificial photosynthesis using a simple Z-scheme system in which two kinds of photocatalyst powders (CuGaS2 and an RGO–TiO2 composite) were only dispersed in water under 1 atm of CO2.


2022 ◽  
Vol 607 ◽  
pp. 1180-1188
Author(s):  
Ahmed Mahmoud Idris ◽  
Xinyan Jiang ◽  
Jun Tan ◽  
Zhenzhi Cai ◽  
Xiaodan Lou ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
pp. 9
Author(s):  
Cansu Esen ◽  
Baris Kumru

As a metal-free polymeric semiconductor with an absorption in the visible range, carbon nitride has numerous advantages for photo-based applications spanning hydrogen evolution, CO2 reduction, ion transport, organic synthesis and organic dye degradation. The combination of g-C3N4 and polymer networks grants mutual benefit for both platforms, as networks are upgraded with photoactivity or formed by photoinitiation, and g-C3N4 is integrated into novel applications. In the present contribution, some of the recently published projects regarding g-C3N4 and polymeric materials will be highlighted. In the first study, organodispersible g-C3N4 were incorporated into a highly commercialized porous resin called poly(styrene-co-divinylbenzene) through suspension photopolymerization, and performances of resulting beads were investigated as recyclable photocatalysts. In the other study, g-C3N4 nanosheets were embedded in porous hydrogel networks, and so-formed hydrogels with photoactivity were transformed either into a ‘hydrophobic hydrogel’ or pore-patched materials via secondary network introduction, where both processes were accomplished via visible light. Since g-C3N4 is an organic semiconductor exhibiting sufficient charge separation under visible light illumination, a novel method for the oxidative photopolymerization of EDOT was successfully accomplished. As a result of the absence of dissolved anions during polymerization, so-formed neutral PEDOT is a highly viscous liquid that can be processed and post-doped easily, and grants facile coating processes.


2018 ◽  
Vol 130 (50) ◽  
pp. 16685-16689 ◽  
Author(s):  
Jin Wang ◽  
Tong Xia ◽  
Lei Wang ◽  
Xusheng Zheng ◽  
Zeming Qi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document