Light-Driven Integration of Graphitic Carbon Nitride into Polymer Materials

2021 ◽  
Vol 7 (1) ◽  
pp. 9
Author(s):  
Cansu Esen ◽  
Baris Kumru

As a metal-free polymeric semiconductor with an absorption in the visible range, carbon nitride has numerous advantages for photo-based applications spanning hydrogen evolution, CO2 reduction, ion transport, organic synthesis and organic dye degradation. The combination of g-C3N4 and polymer networks grants mutual benefit for both platforms, as networks are upgraded with photoactivity or formed by photoinitiation, and g-C3N4 is integrated into novel applications. In the present contribution, some of the recently published projects regarding g-C3N4 and polymeric materials will be highlighted. In the first study, organodispersible g-C3N4 were incorporated into a highly commercialized porous resin called poly(styrene-co-divinylbenzene) through suspension photopolymerization, and performances of resulting beads were investigated as recyclable photocatalysts. In the other study, g-C3N4 nanosheets were embedded in porous hydrogel networks, and so-formed hydrogels with photoactivity were transformed either into a ‘hydrophobic hydrogel’ or pore-patched materials via secondary network introduction, where both processes were accomplished via visible light. Since g-C3N4 is an organic semiconductor exhibiting sufficient charge separation under visible light illumination, a novel method for the oxidative photopolymerization of EDOT was successfully accomplished. As a result of the absence of dissolved anions during polymerization, so-formed neutral PEDOT is a highly viscous liquid that can be processed and post-doped easily, and grants facile coating processes.

Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3948
Author(s):  
Lingfang Qiu ◽  
Zhiwei Zhou ◽  
Mengfan Ma ◽  
Ping Li ◽  
Jinyong Lu ◽  
...  

Novel visible-light responded aluminosilicophosphate-5 (SAPO-5)/g-C3N4 composite has been easily constructed by thermal polymerization for the mixture of SAPO-5, NH4Cl, and dicyandiamide. The photocatalytic activity of SAPO-5/g-C3N4 is evaluated by degrading RhB (30 mg/L) under visible light illumination (λ > 420 nm). The effects of SAPO-5 incorporation proportion and initial RhB concentration on the photocatalytic performance have been discussed in detail. The optimized SAPO-5/g-C3N4 composite shows promising degradation efficiency which is 40.6% higher than that of pure g-C3N4. The degradation rate improves from 0.007 min−1 to 0.022 min−1, which is a comparable photocatalytic performance compared with other g-C3N4-based heterojunctions for dye degradation. The migration of photo-induced electrons from g-C3N4 to the Al site of SAPO-5 should promote the photo-induced electron-hole pairs separation rate of g-C3N4 efficiently. Furthermore, the redox reactions for RhB degradation occur on the photo-induced holes in the g-C3N4 and Al sites in SAPO-5, respectively. This achievement not only improves the photocatalytic activity of g-C3N4 efficiently, but also broadens the application of SAPOs in the photocatalytic field.


2020 ◽  
Vol 20 (9) ◽  
pp. 5426-5432
Author(s):  
G. Gnanamoorthy ◽  
M. Muthukumaran ◽  
P. Varun Prasath ◽  
V. Karthikeyan ◽  
V. Narayanan ◽  
...  

Photocatalysts provide excellent potential for the full removal of organic chemical pollutants as an environmentally friendly technology. It has been noted that under UV-visible light irradiation, nanostructured semiconductor metal oxides photocatalysts can degrade different organic pollutants. The Sn6SiO8/rGO nanocomposite was synthesized by a hydrothermal method. The Sn6SiO8 nanoparticles hexagonal phase was confirmed by XRD and functional groups were analyzed by FT-IR spectroscopy. The bandgap of Sn6SiO8 nanoparticles (NPs) and Sn6SiO8/GO composites were found to be 2.7 eV and 2.5 eV, respectively. SEM images of samples showed that the flakes like morphology. This Sn6SiO8/rGO nanocomposite was testing for photocatalytic dye degradation of MG under visible light illumination and excellent response for the catalysts. The enhancement of photocatalytic performance was mainly attributed to the increased light absorption, charge separation efficiency and specific surface area, proved by UV-vis DRS. Further, the radical trapping experiments revealed that holes (h+) and superoxide radicals (·O−2) were the main active species for the degradation of MG, and a possible photocatalytic mechanism was discussed.


2018 ◽  
Vol 281 ◽  
pp. 878-884
Author(s):  
Zhi Wei Zhou ◽  
Ling Fang Qiu ◽  
Xiao Bin Qiu ◽  
Shu Wang Duo

In order to enhance hole/electron separation and charge transfer in photocatalysts, the heterostructured g-C3N4/CoAPO-5 hybrids materials were synthesized via a simple grinding method and were investigated using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The optical properties of g-C3N4/CoAPO-5 hybrids materials were measured by ultraviolet-visible diffuse-reflectance spectroscopy (DRS), photoluminescence (PL) spectra and ultraviolet-visible absorption (UV-Vis) spectra. Under visible-light illumination, this work shows the heterogeneous g-C3N4/CoAPO-5 hybrids present a superior photocatalytic activity.


2017 ◽  
Vol 200 ◽  
pp. 141-149 ◽  
Author(s):  
Guixia Zhao ◽  
Hong Pang ◽  
Guigao Liu ◽  
Peng Li ◽  
Huimin Liu ◽  
...  

2020 ◽  
Vol 18 (4) ◽  
pp. 1413-1422 ◽  
Author(s):  
Barbara Ronara Machado de Lima ◽  
Nilson Machado Pontes do Nascimento ◽  
José Roberto Zamian ◽  
Carlos Emmerson F. da Costa ◽  
Luis Adriano Santos do Nascimento ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 77
Author(s):  
Xiaobin Qiu ◽  
Lingfang Qiu ◽  
Mengfan Ma ◽  
Yingying Hou ◽  
Shuwang Duo

Polymeric carbon nitride is a fascinating visible-light-response metal-free semiconductor photocatalyst in recent decades. Nevertheless, the photocatalytic H2 efficiency is unsatisfactory due to the insufficient visible-light harvesting capacity and low quantum yields caused by the bulky structure seriously limited its applications. To overcome these defects, in this research, a 3D hierarchical pancake-like porous carbon nitride (PPCN) was successfully fabricated by a facile bottom-up method. The as-prepared photocatalyst exhibit enlarged surface area, enriched reactive sites, improved charge carrier transformation and separation efficiency, and expanded bandgap with a more negative conduction band towardan enhanced reduction ability. All these features synergistically enhanced the photocatalytic H2 evolution efficiency of 3% Pt@PPCN (430 µmol g−1 h−1) under the visible light illumination (λ ≥ 420 nm), which was nine-fold higher than that of 3% Pt@bulk C3N4 (BCN) (45 µmol g−1 h−1). The improved structure and enhanced photoelectric properties were systematically investigated by different characterization techniques. This research may provide an insightful synthesis strategy for polymeric carbon nitride with excellent light-harvesting capacity and enhanced separation of charges toward remarkable photocatalytic H2 for water splitting.


ChemCatChem ◽  
2018 ◽  
Vol 10 (22) ◽  
pp. 5270-5279 ◽  
Author(s):  
Fangshu Xing ◽  
Qiuwen Liu ◽  
Mingxia Song ◽  
Caijin Huang

Sign in / Sign up

Export Citation Format

Share Document