Mode of action of berninamycin. An inhibitor of protein biosynthesis

Biochemistry ◽  
1969 ◽  
Vol 8 (8) ◽  
pp. 3303-3308 ◽  
Author(s):  
Fritz Reusser
Author(s):  
IRA G. WOOL ◽  
WILLIAM S. STIREWALT ◽  
KENZO KURIHARA ◽  
ROBERT B. LOW ◽  
PHYLLIS BAILEY ◽  
...  

2004 ◽  
Vol 48 (7) ◽  
pp. 2588-2594 ◽  
Author(s):  
Bernd Hutter ◽  
Christina Fischer ◽  
Alexander Jacobi ◽  
Christoph Schaab ◽  
Hannes Loferer

ABSTRACT In a recent project, we collected the transcriptional profiles of Bacillus subtilis 168 after treatment with a large set of diverse antibacterial agents. One result of the data analysis was the identification of marker genes that are indicative of certain compounds or compound classes. We cloned these promoter regions in front of a luciferase reporter gene and reintroduced the constructs individually into the B. subtilis chromosome. Strains were analyzed for their responsiveness after treatment with a set of 37 antibacterials. Twelve functional reporter strains were generated that were selectively and significantly upregulated by the compounds. The selectivity of the reporter strains ranged from generic pathways like protein biosynthesis, cell wall biosynthesis, and fatty acid biosynthesis to compound classes (quinolones and glycopeptides) and individual compounds (rifampin, cycloserine, and clindamycin). Five of the strains are amenable for high-throughput applications, e.g., pathway-specific screening. In summary, we successfully generated B. subtilis reporter strains that are indicative of the mechanisms of action of various classes of antibacterials. The set of reporter strains presented herein can be used for mode-of-action analyses and for whole-cell screening of compound libraries in a mode-of-action-specific manner.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Author(s):  
E. A. Elfont ◽  
R. B. Tobin ◽  
D. G. Colton ◽  
M. A. Mehlman

Summary5,-5'-diphenyl-2-thiohydantoin (DPTH) is an effective inhibitor of thyroxine (T4) stimulation of α-glycerophosphate dehydrogenase in rat liver mitochondria. Because this finding indicated a possible tool for future study of the mode of action of thyroxine, the ultrastructural and biochemical effects of DPTH and/or thyroxine on rat liver mere investigated.Rats were fed either standard or DPTH (0.06%) diet for 30 days before T4 (250 ug/kg/day) was injected. Injection of T4 occurred daily for 10 days prior to sacrifice. After removal of the liver and kidneys, part of the tissue was frozen at -50°C for later biocheailcal analyses, while the rest was prefixed in buffered 3.5X glutaraldehyde (390 mOs) and post-fixed in buffered 1Z OsO4 (376 mOs). Tissues were embedded in Araldlte 502 and the sections examined in a Zeiss EM 9S.Hepatocytes from hyperthyroid rats (Fig. 2) demonstrated enlarged and more numerous mitochondria than those of controls (Fig. 1). Glycogen was almost totally absent from the cytoplasm of the T4-treated rats.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

Correlations between structure and function of biological macromolecules have been studied intensively for many years, mostly by indirect methods. High resolution electron microscopy is a unique tool which can provide such information directly by comparing the conformation of biopolymers in their biologically active and inactive state. We have correlated the structure and function of ribosomes, ribonucleoprotein particles which are the site of protein biosynthesis. 70S E. coli ribosomes, used in this experiment, are composed of two subunits - large (50S) and small (30S). The large subunit consists of 34 proteins and two different ribonucleic acid molecules. The small subunit contains 21 proteins and one RNA molecule. All proteins (with the exception of L7 and L12) are present in one copy per ribosome.This study deals with the changes in the fine structure of E. coli ribosomes depleted of proteins L7 and L12. These proteins are unique in many aspects.


Sign in / Sign up

Export Citation Format

Share Document