scholarly journals GTP Hydrolysis of Cell Division Protein FtsZ:  Evidence that the Active Site Is Formed by the Association of Monomers†

Biochemistry ◽  
2002 ◽  
Vol 41 (2) ◽  
pp. 521-529 ◽  
Author(s):  
Dirk-Jan Scheffers ◽  
Janny G. de Wit ◽  
Tanneke den Blaauwen ◽  
Arnold J. M. Driessen
2006 ◽  
Vol 188 (21) ◽  
pp. 7677-7685 ◽  
Author(s):  
L. S. Thompson ◽  
P. L. Beech ◽  
G. Real ◽  
A. O. Henriques ◽  
E. J. Harry

ABSTRACT During spore formation in Bacillus subtilis, cell division occurs at the cell pole and is believed to require essentially the same division machinery as vegetative division. Intriguingly, although the cell division protein DivIB is not required for vegetative division at low temperatures, it is essential for efficient sporulation under these conditions. We show here that at low temperatures in the absence of DivIB, formation of the polar septum during sporulation is delayed and less efficient. Furthermore, the polar septa that are complete are abnormally thick, containing more peptidoglycan than a normal polar septum. These results show that DivIB is specifically required for the efficient and correct formation of a polar septum. This suggests that DivIB is required for the modification of sporulation septal peptidoglycan, raising the possibility that DivIB either regulates hydrolysis of polar septal peptidoglycan or is a hydrolase itself. We also show that, despite the significant number of completed polar septa that form in this mutant, it is unable to undergo engulfment. Instead, hydrolysis of the peptidoglycan within the polar septum, which occurs during the early stages of engulfment, is incomplete, producing a similar phenotype to that of mutants defective in the production of sporulation-specific septal peptidoglycan hydrolases. We propose a role for DivIB in sporulation-specific peptidoglycan remodelling or its regulation during polar septation and engulfment.


Microbiology ◽  
2003 ◽  
Vol 149 (8) ◽  
pp. 2235-2242 ◽  
Author(s):  
Elaine Small ◽  
Stephen G. Addinall

In vitro polymerization of the essential bacterial cell division protein FtsZ, in the presence of GTP, is rapid and transient due to its efficient binding and hydrolysis of GTP. In contrast, the in vivo polymeric FtsZ structure which drives cell division – the Z-ring – is present in cells for extended periods of time whilst undergoing constant turnover of FtsZ. It is demonstrated that dynamic polymerization of Escherichia coli FtsZ in vitro is sensitive to the ratio of GTP to GDP concentration. Increase of GDP concentration in the presence of a constant GTP concentration reduces both the duration of FtsZ polymerization and the initial light-scattering maximum which occurs upon addition of GTP. It is also demonstrated that by use of a GTP-regeneration system, polymers of FtsZ can be maintained in a steady state for up to 85 min, while preserving their dynamic properties. The authors therefore present the use of a GTP-regeneration system for FtsZ polymerization as an assay more representative of the in vivo situation, where FtsZ polymers are subject to a constant, relatively high GTP to GDP ratio.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Taylor B Updegrove ◽  
Jailynn Harke ◽  
Vivek Anantharaman ◽  
Jin Yang ◽  
Nikhil Gopalan ◽  
...  

Hydrolysis of nucleoside triphosphates releases similar amounts of energy. However, ATP hydrolysis is typically used for energy-intensive reactions, whereas GTP hydrolysis typically functions as a switch. SpoIVA is a bacterial cytoskeletal protein that hydrolyzes ATP to polymerize irreversibly during Bacillus subtilis sporulation. SpoIVA evolved from a TRAFAC class of P-loop GTPases, but the evolutionary pressure that drove this change in nucleotide specificity is unclear. We therefore reengineered the nucleotide-binding pocket of SpoIVA to mimic its ancestral GTPase activity. SpoIVAGTPase functioned properly as a GTPase but failed to polymerize because it did not form an NDP-bound intermediate that we report is required for polymerization. Further, incubation of SpoIVAGTPase with limiting ATP did not promote efficient polymerization. This approach revealed that the nucleotide base, in addition to the energy released from hydrolysis, can be critical in specific biological functions. We also present data suggesting that increased levels of ATP relative to GTP at the end of sporulation was the evolutionary pressure that drove the change in nucleotide preference in SpoIVA.


1980 ◽  
Vol 255 (14) ◽  
pp. 6609-6616 ◽  
Author(s):  
K.C. Glenn ◽  
D.H. Carney ◽  
J.W. Fenton ◽  
D.D. Cunningham

2021 ◽  
Vol 1868 (5) ◽  
pp. 118986 ◽  
Author(s):  
Miguel Ángel Robles-Ramos ◽  
Silvia Zorrilla ◽  
Carlos Alfonso ◽  
William Margolin ◽  
Germán Rivas ◽  
...  

2018 ◽  
Author(s):  
Yoonjae Shin ◽  
Yong Kim ◽  
Hyemin Kim ◽  
Nakyoung Shin ◽  
Tae Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document