A Nonproteolytic Function of the 19S Regulatory Subunit of the 26S Proteasome Is Required for Efficient Activated Transcription by Human RNA Polymerase II†

Biochemistry ◽  
2002 ◽  
Vol 41 (42) ◽  
pp. 12798-12805 ◽  
Author(s):  
Anwarul Ferdous ◽  
Thomas Kodadek ◽  
Stephen Albert Johnston
1999 ◽  
Vol 19 (10) ◽  
pp. 6972-6979 ◽  
Author(s):  
Sylvie L. Beaudenon ◽  
Maria R. Huacani ◽  
Guangli Wang ◽  
Donald P. McDonnell ◽  
Jon M. Huibregtse

ABSTRACT Rsp5 is an E3 ubiquitin-protein ligase of Saccharomyces cerevisiae that belongs to the hect domain family of E3 proteins. We have previously shown that Rsp5 binds and ubiquitinates the largest subunit of RNA polymerase II, Rpb1, in vitro. We show here that Rpb1 ubiquitination and degradation are induced in vivo by UV irradiation and by the UV-mimetic compound 4-nitroquinoline-1-oxide (4-NQO) and that a functional RSP5 gene product is required for this effect. The 26S proteasome is also required; a mutation ofSEN3/RPN2 (sen3-1), which encodes an essential regulatory subunit of the 26S proteasome, partially blocks 4-NQO-induced degradation of Rpb1. These results suggest that Rsp5-mediated ubiquitination and degradation of Rpb1 are components of the response to DNA damage. A human WW domain-containing hect (WW-hect) E3 protein closely related to Rsp5, Rpf1/hNedd4, also binds and ubiquitinates both yeast and human Rpb1 in vitro, suggesting that Rpf1 and/or another WW-hect E3 protein mediates UV-induced degradation of the large subunit of polymerase II in human cells.


2007 ◽  
Vol 27 (13) ◽  
pp. 4891-4904 ◽  
Author(s):  
H. Karimi Kinyamu ◽  
Trevor K. Archer

ABSTRACT The 26S proteasome modulates steroid hormone receptor-dependent gene transcription at least in part by regulating turnover and recycling of receptor/transcriptional DNA complexes, thereby ensuring continued hormone response. For the glucocorticoid receptor (GR), inhibition of proteasome-mediated proteolysis or RNA interference-mediated depletion of specific proteasome subunits results in an increase in gene expression. To facilitate transcription, proteasome inhibition alters at least two features associated with modification of chromatin architecture and gene transcription. First, proteasome inhibition increases trimethyl histone H3K4 levels with a corresponding accumulation of this modification on GR-regulated promoters in vivo. Secondly, global levels of phosphorylated RNA polymerase II (Pol II) increase, together with hormone-dependent association of the phosphorylated Pol II, with the promoter and the body of the activated gene. We propose that apart from modulating receptor turnover, the proteasome directly influences both the transcription machinery and chromatin structure, factors integral to nuclear receptor-regulated gene transcription.


1999 ◽  
Vol 274 (49) ◽  
pp. 34527-34530 ◽  
Author(s):  
Tsu-Ju Fu ◽  
Junmin Peng ◽  
Gary Lee ◽  
David H. Price ◽  
Osvaldo Flores

PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0125599 ◽  
Author(s):  
Hwa-Young Sun ◽  
Nari Kim ◽  
Cheol-Sang Hwang ◽  
Joo-Yeon Yoo

2003 ◽  
Vol 23 (7) ◽  
pp. 2341-2350 ◽  
Author(s):  
Shyamal D. Desai ◽  
Hui Zhang ◽  
Alexandra Rodriguez-Bauman ◽  
Jin-Ming Yang ◽  
Xiaohua Wu ◽  
...  

ABSTRACT Topoisomerase I (Top I)-DNA covalent complexes represent a unique type of DNA lesion whose repair and processing remain unclear. In this study, we show that Top I-DNA covalent complexes transiently arrest RNA transcription in normal nontransformed cells. Arrest of RNA transcription is coupled to activation of proteasomal degradation of Top I and the large subunit of RNA polymerase II. Recovery of transcription occurs gradually and depends on both proteasomal degradation of Top I and functional transcription-coupled repair (TCR). These results suggest that arrest of the RNA polymerase elongation complex by the Top I-DNA covalent complex triggers a 26S proteasome-mediated signaling pathway(s) leading to degradation of both Top I and the large subunit of RNA polymerase II. We propose that proteasomal degradation of Top I and RNA polymerase II precedes repair of the exposed single-strand breaks by TCR.


2006 ◽  
Vol 73 ◽  
pp. 85-96 ◽  
Author(s):  
Richard J. Reece ◽  
Laila Beynon ◽  
Stacey Holden ◽  
Amanda D. Hughes ◽  
Karine Rébora ◽  
...  

The recognition of changes in environmental conditions, and the ability to adapt to these changes, is essential for the viability of cells. There are numerous well characterized systems by which the presence or absence of an individual metabolite may be recognized by a cell. However, the recognition of a metabolite is just one step in a process that often results in changes in the expression of whole sets of genes required to respond to that metabolite. In higher eukaryotes, the signalling pathway between metabolite recognition and transcriptional control can be complex. Recent evidence from the relatively simple eukaryote yeast suggests that complex signalling pathways may be circumvented through the direct interaction between individual metabolites and regulators of RNA polymerase II-mediated transcription. Biochemical and structural analyses are beginning to unravel these elegant genetic control elements.


Sign in / Sign up

Export Citation Format

Share Document