Density Functional Theory Calculations on the Dielectric Constant Dependence of the Oxidation Potential of Chlorophyll:  Implication for the High Potential of P680 in Photosystem II†

Biochemistry ◽  
2005 ◽  
Vol 44 (24) ◽  
pp. 8865-8872 ◽  
Author(s):  
Koji Hasegawa ◽  
Takumi Noguchi
2001 ◽  
Vol 670 ◽  
Author(s):  
Michael Haverty ◽  
Atsushi Kawamoto ◽  
Gyuchang Jun ◽  
Kyeongjae Cho ◽  
Robert Dutton

ABSTRACTBulk Density Functional Theory calculations were performed on Hf and Zr substitutions for Al in κ-alumina. The lowest energy configuration found was an octahedrally coordinated Zr site. Zr dissolution was favorable with an enthalpy of -2eV/unit cell for forming Al1.875Zr0.125O3 from pure Zr and κ-alumina. Hf and Zr substitution for Al atoms introduced empty d-states below the conduction band edge reducing the Eg of pure κ-alumina (7.5eV) to 6.4-5.9eV. The edge of the valence band however remained fixed by the O p-state character. The substitution of Hf and Zr into the alumina structure may lead to a higher dielectric constant, but will also reduce Eg and result in a trade off in tunneling currents in devices.


RSC Advances ◽  
2014 ◽  
Vol 4 (73) ◽  
pp. 38551-38557 ◽  
Author(s):  
Baotao Kang ◽  
Hu Shi ◽  
Shihai Yan ◽  
Jin Yong Lee

Density functional theory calculations have been carried out for the ground state (S0) and the first excited state (S1) of the H-bonded phenol and imidazole complex as a model system for the active site of photosystem II.


2006 ◽  
Vol 71 (11-12) ◽  
pp. 1525-1531 ◽  
Author(s):  
Wojciech Grochala

The enthalpy of four polymorphs of CaN has been scrutinized at 0 and 100 GPa using density functional theory calculations. It is shown that structures of diamagnetic calcium diazenide (Ca2N2) are preferred over the cubic ferromagnetic polymorph (CaN) postulated before, both at 0 and 100 GPa.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chih-Chuen Lin ◽  
Phani Motamarri ◽  
Vikram Gavini

AbstractWe present a tensor-structured algorithm for efficient large-scale density functional theory (DFT) calculations by constructing a Tucker tensor basis that is adapted to the Kohn–Sham Hamiltonian and localized in real-space. The proposed approach uses an additive separable approximation to the Kohn–Sham Hamiltonian and an L1 localization technique to generate the 1-D localized functions that constitute the Tucker tensor basis. Numerical results show that the resulting Tucker tensor basis exhibits exponential convergence in the ground-state energy with increasing Tucker rank. Further, the proposed tensor-structured algorithm demonstrated sub-quadratic scaling with system-size for both systems with and without a gap, and involving many thousands of atoms. This reduced-order scaling has also resulted in the proposed approach outperforming plane-wave DFT implementation for systems beyond 2000 electrons.


2021 ◽  
Vol 60 (8) ◽  
pp. 6016-6026
Author(s):  
Aydar Rakhmatullin ◽  
Maxim S. Molokeev ◽  
Graham King ◽  
Ilya B. Polovov ◽  
Konstantin V. Maksimtsev ◽  
...  

Author(s):  
Lijuan Meng ◽  
Jinlian Lu ◽  
Yujie Bai ◽  
Lili Liu ◽  
Tang Jingyi ◽  
...  

Understanding the fundamentals of chemical vapor deposition bilayer graphene growth is crucial for its synthesis. By employing density functional theory calculations and classical molecular dynamics simulations, we have investigated the...


Sign in / Sign up

Export Citation Format

Share Document