Evidence that the Principal CoII-Binding Site in Human Serum Albumin Is Not at the N-Terminus:  Implication on the Albumin Cobalt Binding Test for Detecting Myocardial Ischemia‡

Biochemistry ◽  
2007 ◽  
Vol 46 (8) ◽  
pp. 2267-2274 ◽  
Author(s):  
Emmanuelle Mothes ◽  
Peter Faller
2022 ◽  
Vol 23 (2) ◽  
pp. 719
Author(s):  
Yeonje Cho ◽  
Armin Mirzapour-Kouhdasht ◽  
Hyosuk Yun ◽  
Jeong Hoon Park ◽  
Hye Jung Min ◽  
...  

Radioactive isotopes are used as drugs or contrast agents in the medical field after being conjugated with chelates such as DOTA, NOTA, DTPA, TETA, CyDTA, TRITA, and DPDP. The N-terminal sequence of human serum albumin (HSA) is known as a metal binding site, such as for Co2+, Cu2+, and Ni2+. For this study, we designed and synthesized wAlb12 peptide from the N-terminal region of HSA, which can bind to cobalt, to develop a peptide-based chelate. The wAlb12 with a random coil structure tightly binds to the Co(II) ion. Moreover, the binding property of wAlb12 toward Co(II) was confirmed using various spectroscopic experiments. To identify the binding site of wAlb12, the analogs were synthesized by alanine scanning mutagenesis. Among them, H3A and Ac-wAlb12 did not bind to Co(II). The analysis of the binding regions confirmed that the His3 and α-amino group of the N-terminal region are important for Co(II) binding. The wAlb12 bound to Co(II) with Kd of 75 μM determined by isothermal titration calorimetry when analyzed by a single-site binding model. For the use of wAlb12 as a chelate in humans, its cytotoxicity and stability were investigated. Trypsin stability showed that the wAlb12 − Co(II) complex was more stable than wAlb12 alone. Furthermore, the cell viability analysis showed wAlb12 and wAlb12 + Co(II) to be non-toxic to the Raw 264.7 and HEK 293T cell lines. Therefore, a hot radioactive isotope such as cobalt-57 will have the same effect as a stable isotope cobalt. Accordingly, we expect wAlb12 to be used as a peptide chelate that binds with radioactive isotopes.


2020 ◽  
Vol 21 (16) ◽  
pp. 5740
Author(s):  
Hrvoje Rimac ◽  
Tana Tandarić ◽  
Robert Vianello ◽  
Mirza Bojić

Human serum albumin (HSA) is the most abundant carrier protein in the human body. Competition for the same binding site between different ligands can lead to an increased active concentration or a faster elimination of one or both ligands. Indomethacin and quercetin both bind to the binding site located in the IIA subdomain. To determine the nature of the HSA-indomethacin-quercetin interactions, spectrofluorometric, docking, molecular dynamics studies, and quantum chemical calculations were performed. The results show that the indomethacin and quercetin binding sites do not overlap. Moreover, the presence of quercetin does not influence the binding constant and position of indomethacin in the pocket. However, binding of quercetin is much more favorable in the presence of indomethacin, with its position and interactions with HSA significantly changed. These results provide a new insight into drug-drug interactions, which can be important in situations when displacement from HSA or other proteins is undesirable or even desirable. This principle could also be used to deliberately prolong or shorten the xenobiotics’ half-life in the body, depending on the desired outcomes.


RSC Advances ◽  
2016 ◽  
Vol 6 (94) ◽  
pp. 91756-91767 ◽  
Author(s):  
Md. Zahirul Kabir ◽  
Wei-Ven Tee ◽  
Saharuddin B. Mohamad ◽  
Zazali Alias ◽  
Saad Tayyab

Binding orientation of the GEF in the binding site III, located in subdomain IB of HSA.


2012 ◽  
Vol 10 (41) ◽  
pp. 8314 ◽  
Author(s):  
Ximin Zhou ◽  
Wenjuan Lü ◽  
Li Su ◽  
Yalei Dong ◽  
Qianfeng Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document