Dimer Dissociation and Thermosensitivity Kinetics of theSaccharomycescerevisiaeand Human TATA Binding Proteins†

Biochemistry ◽  
1999 ◽  
Vol 38 (35) ◽  
pp. 11340-11348 ◽  
Author(s):  
Amy J. Jackson-Fisher ◽  
Sandeep Burma ◽  
Matthew Portnoy ◽  
Lumelle A. Schneeweis ◽  
Robert A. Coleman ◽  
...  
1980 ◽  
Vol 186 (1) ◽  
pp. 201-210 ◽  
Author(s):  
Kalappagowda Muniyappa ◽  
P. Radhakantha Adiga

A specific radioimmunoassay procedure was developed to monitor the plasma concentrations of thiamin-binding protein, a minor yolk constituent of the chicken egg. By using this sensitive assay, the kinetics of oestrogen-induced elaboration of this specific protein in immature chicks was investigated. After a single injection of the steroid hormone, with an initial lag period of 4–5h the thiamin-binding protein rapidly accumulated in the plasma, attaining peak concentrations around 75h and declining thereafter. A 4-fold amplification of the response was noticed during the secondary stimulation, and this increased to 9-fold during the tertiary stimulation with the steroid hormone. The magnitude of the response was dependent on the hormone dose, and the initial latent period and the duration of the ascending phase of induction were unchanged for the hormonal doses tested during both the primary and secondary stimulations. The circulatory half-life of the protein was 6h as calculated from the measurement of the rate of disappearance of the exogenously administered 125I-labelled protein. Simultaneous administration of progesterone, dihydrotestosterone or corticosterone did not alter the pattern of induction. On the other hand, hyperthyroidism markedly decreased the oestrogenic response, whereas propylthiouracil-induced hypothyroidism had the opposite effect. The anti-oestrogen E- and Z-clomiphene citrates, administered 30min before oestrogen, effectively blocked the hormonal induction. α-Amanitin and cycloheximide administered along with or shortly after the sex steroid severely curtailed the protein elaboration. A comparison of the kinetics of induction of thiamin- and riboflavin-binding proteins by oestrogen revealed that, beneath an apparent similarity, a clear-cut difference exists between the two vitamin-binding proteins, particularly with regard to hormonal dose-dependent sensitivity of induction and the half-life in circulation. The steroid-mediated elaboration of the two yolk proteins thus appears to be not strictly co-ordinated, despite several common regulatory features underlying their induction.


1999 ◽  
Vol 55 (11) ◽  
pp. 1850-1857 ◽  
Author(s):  
Barnali Neel Chaudhuri ◽  
Gerard J. Kleywegt ◽  
Isabelle Broutin-L'Hermite ◽  
Terese Bergfors ◽  
Hans Senn ◽  
...  

Retinoids play important roles in diverse cellular processes including growth, cell differentiation and vision. Many natural and synthetic retinoids are used as drugs in dermatology and oncology. A large amount of data has been accumulated on the cellular activity of different synthetic retinoids. They are stabilized and transported inside the cell cytoplasm by binding and transport proteins, such as cellular retinol-binding proteins and cellular retinoic acid binding proteins (CRABPs). The structures of human CRABP II in complex with two different synthetic retinoids, Ro13-6307 and Ro12-7310 (at 2.1 and 2.0 Å resolution, respectively) and of bovine CRABP I in complex with a retinobenzoic acid, Am80 (at 2.8 Å resolution) are described. The binding affinities of human CRABP I and II for the retinoids studied here have been determined. All these compounds have comparable binding affinities (nanomolar range) for both CRABPs. Apart from the particular interactions of the carboxylate group of the retinoids with specific protein groups, each structure reveals characteristic interactions. Studying the atomic details of the interaction of retinoids with retinoid-binding proteins facilitates the understanding of the kinetics of retinoid trafficking inside the cytoplasm.


2001 ◽  
Vol 69 (5) ◽  
pp. 2872-2877 ◽  
Author(s):  
Saddif Ahmed ◽  
Sajeda Meghji ◽  
Rachel J. Williams ◽  
Brian Henderson ◽  
Jeremy H. Brock ◽  
...  

ABSTRACT Staphylococcus aureus is a major pathogen of bone that has been shown to be internalized by osteoblasts via a receptor-mediated pathway. Here we report that there are strain-dependent differences in the uptake of S. aureus by osteoblasts. An S. aureus septic arthritis isolate, LS-1, was internalized some 10-fold more than the laboratory strain 8325-4. Disruption of the genes for the fibronectin binding proteins in these two strains of S. aureus blocked their ability to be internalized by osteoblasts, thereby demonstrating the essentiality of these genes in this process. However, there were no differences in the capacity of these two strains to bind to fibronectin or osteoblasts. Analysis of the kinetics of internalization of the two strains by osteoblasts revealed that strain 8325-4 was internalized only over a short period of time (2 h) and to low numbers, while LS-1 was taken up by osteoblasts in large numbers for over 3 h. These differences in the kinetics of uptake explain the fact that the two strains ofS. aureus are internalized by osteoblasts to different extents and suggest that in addition to the fibronectin binding proteins there are other, as yet undetermined virulence factors that play a role in the internalization process.


Biochemistry ◽  
1984 ◽  
Vol 23 (16) ◽  
pp. 3715-3721 ◽  
Author(s):  
John B. Cannon ◽  
Fu Shin Kuo ◽  
Robert F. Pasternack ◽  
Ngai M. Wong ◽  
Ursula Muller-Eberhard

Endocrine ◽  
2003 ◽  
Vol 21 (3) ◽  
pp. 279-288 ◽  
Author(s):  
Robert H. McCusker ◽  
Rebecca L. Mateski ◽  
Jan Novakofski

Sign in / Sign up

Export Citation Format

Share Document