One-step affinity purification of recombinant TATA binding proteins utilizing a modular protein interaction partner

2008 ◽  
Vol 59 (2) ◽  
pp. 297-301 ◽  
Author(s):  
Dean D. Shooltz ◽  
Glen L. Alberts ◽  
Steven J. Triezenberg
1990 ◽  
Vol 63 (03) ◽  
pp. 439-444 ◽  
Author(s):  
C Kuyas ◽  
A Haeberli ◽  
P Walder ◽  
P W Straub

SummaryWith an immobilized synthetic pentapeptide GlyProArgProLys comprising the N-terminal sequence GlyProArg of the α-chain of fibrin, a new affinity method for the quantitative isolation of fibrinogen out of anticoagulated plasma was developed. The method proved to be superior to all known isolation methods in respect to ease of use and yield, since fibrinogen could be isolated in one step out of plasma with a recovery of more than 95% when compared to the immunologically measurable amounts of fibrinogen. Moreover the amounts of contaminating proteins such as fibronectin, factor XIII or plasminogen were negligible and the purity of the isolated fibrinogen was higher than 95% as measured by polyacrylamide gel electrophoresis. The clottability was 90% and more. Another advantage of this affinity purification method is the possibility to isolate fibrinogen quantitatively out of small plasma samples (<5 ml). Further, abnormal fibrinogen molecules, provided their complementary binding site for GlyProArg is preserved, may also be quantitatively isolated independent of any solubility differences as compared to normal fibrinogen. In addition fibrin(ogcn) fragments originating from plasmic digestion can be separated on the basis of their affinity to GlyProArg. The described affinity gel can be used more than 50 times without any loss of capacity.


2019 ◽  
Vol 21 (5) ◽  
pp. 1787-1797
Author(s):  
Chenyang Hong ◽  
Kevin Y Yip

Abstract Many DNA-binding proteins interact with partner proteins. Recently, based on the high-throughput consecutive affinity-purification systematic evolution of ligands by exponential enrichment (CAP-SELEX) method, many such protein pairs have been found to bind DNA with flexible spacing between their individual binding motifs. Most existing motif representations were not designed to capture such flexibly spaced regions. In order to computationally discover more co-binding events without prior knowledge about the identities of the co-binding proteins, a new representation is needed. We propose a new class of sequence patterns that flexibly model such variable regions and corresponding algorithms that identify co-bound sequences using these patterns. Based on both simulated and CAP-SELEX data, features derived from our sequence patterns lead to better classification performance than patterns that do not explicitly model the variable regions. We also show that even for standard ChIP-seq data, this new class of sequence patterns can help discover co-bound events in a subset of sequences in an unsupervised manner. The open-source software is available at https://github.com/kevingroup/glk-SVM.


DNA Viruses ◽  
2004 ◽  
pp. 267-276
Author(s):  
Constandache Atanasiu ◽  
Larissa Lezina ◽  
Paul M. Lieberman

2020 ◽  
Vol 295 (42) ◽  
pp. 14291-14304
Author(s):  
Kathrin Bajak ◽  
Kevin Leiss ◽  
Christine Clayton ◽  
Esteban Erben

In Trypanosoma brucei and related kinetoplastids, gene expression regulation occurs mostly posttranscriptionally. Consequently, RNA-binding proteins play a critical role in the regulation of mRNA and protein abundance. Yet, the roles of many RNA-binding proteins are not understood. Our previous research identified the RNA-binding protein ZC3H5 as possibly involved in gene repression, but its role in controlling gene expression was unknown. We here show that ZC3H5 is an essential cytoplasmic RNA-binding protein. RNAi targeting ZC3H5 causes accumulation of precytokinetic cells followed by rapid cell death. Affinity purification and pairwise yeast two-hybrid analysis suggest that ZC3H5 forms a complex with three other proteins, encoded by genes Tb927.11.4900, Tb927.8.1500, and Tb927.7.3040. RNA immunoprecipitation revealed that ZC3H5 is preferentially associated with poorly translated, low-stability mRNAs, the 5′-untranslated regions and coding regions of which are enriched in the motif (U/A)UAG(U/A). As previously found in high-throughput analyses, artificial tethering of ZC3H5 to a reporter mRNA or other complex components repressed reporter expression. However, depletion of ZC3H5 in vivo caused only very minor decreases in a few targets, marked increases in the abundances of very stable mRNAs, an increase in monosomes at the expense of large polysomes, and appearance of “halfmer” disomes containing two 80S subunits and one 40S subunit. We speculate that the ZC3H5 complex might be implicated in quality control during the translation of suboptimal open reading frames.


Sign in / Sign up

Export Citation Format

Share Document