scholarly journals Invasive Plant Management Issues and Challenges in the United States: 2011 Overview

2011 ◽  
2017 ◽  
Vol 10 (01) ◽  
pp. 99-109 ◽  
Author(s):  
Derek J. Sebastian ◽  
Scott J. Nissen ◽  
James R. Sebastian ◽  
Paul J. Meiman ◽  
K. George Beck

There are an estimated 400 million hectares of non-cropland in the United States primarily designated as rangeland and pastureland, and there are more than 300 invasive weeds found on these sites, causing an estimated annual loss of $5 billion. Among the most invasive and problematic weeds are Dalmatian toadflax, diffuse knapweed, downy brome, and musk thistle. Currently, herbicides are the most common management strategy for broadleaf weeds and invasive winter annual grasses. Indaziflam, a new herbicide for invasive plant management in non-crop areas, is a cellulose-biosynthesis inhibitor capable of providing residual invasive winter annual grass control up to 3 yr after treatment (YAT). A field experiment was conducted to determine whether residual Dalmatian toadflax and downy brome control by aminocyclopyrachlor, imazapic, and picloram could be extended by tank mixing these herbicides with indaziflam. Indaziflam tank mixed with aminocyclopyrachlor, imazapic, and picloram provided increased Dalmatian toadflax (84% to 91%) and downy brome (89% to 94%) control 4 YAT, compared with treatments excluding indaziflam. Treatments without indaziflam controlled 50% to 68% of Dalmatian toadflax and <25% downy brome 4 YAT. Based on these results, a greenhouse dose–response experiment was conducted with aminocyclopyrachlor, aminopyralid, and indaziflam to compare preemergence control of nine common non-crop weeds. Averaged across species, aminocyclopyrachlor and aminopyralid GR50values (herbicide concentration resulting in 50% reduction in plant biomass) were 29 and 52 times higher compared with indaziflam, respectively. These data suggest that indaziflam could be used for residual control of non-crop weeds as a tank-mix partner with other foliar-applied broadleaf herbicides.


2021 ◽  
pp. 1-24
Author(s):  
Chad F. Hammer ◽  
John S. Gunn

Abstract Non-native invasive plant species are a major cause of ecosystem degradation and impairment of ecosystem service benefits in the United States. Forested riparian areas provide many ecosystem service benefits and are vital to maintaining water quality of streams and rivers. These systems are also vulnerable to natural disturbances and invasion by non-native plants. We assessed whether planting native trees on disturbed riparian sites may increase biotic resistance to invasive plant establishment in central Vermont in the northeastern United States. The density (stems/m2) of invasive stems was higher in non-planted sites (x̄=4.1 stems/m2) compared to planted sites (x̄=1.3 stems/m2). More than 90% of the invasive plants were Japanese knotweed (Fallopia japonica). There were no significant differences in total stem density of native vegetation between planted and non-planted sites. Other measured response variables such as native tree regeneration, species diversity, soil properties and soil function showed no significant differences or trends in the paired riparian study sites. The results of this case study indicate that tree planting in disturbed riparian forest areas may assist conservation efforts by minimizing the risk of invasive plant colonization.


2013 ◽  
Vol 31 (6) ◽  
pp. 951-968 ◽  
Author(s):  
Jennifer Atchison ◽  
Lesley Head

2017 ◽  
Author(s):  

For Plant Protection and Quarantine (PPQ) and our partners, 2016 was a year of remarkable successes. Not only did we eradicate 10 fruit fly outbreaks, but we also achieved 4 years with zero detections of pink bollworm, moving us one step closer to eradicating this pest from all commercial cotton-growing areas of the continental United States. And when the U.S. corn industry faced the first-ever detection of bacterial leaf streak (Xanthomonas vasicular pv vasculorum), we devised a practical and scientific approach to manage the disease and protect valuable export markets. Our most significant domestic accomplishment this year, however, was achieving one of our agency’s top 10 goals: eliminating the European grapevine moth (EGVM) from the United States. On the world stage, PPQ helped U.S. agriculture thrive in the global market-place. We worked closely with our international trading partners to develop and promote science-based standards, helping to create a safe, fair, and predictable agricultural trade system that minimizes the spread of invasive plant pests and diseases. We reached critical plant health agreements and resolved plant health barriers to trade, which sustained and expanded U.S. export markets valued at more than $4 billion. And, we helped U.S. producers meet foreign market access requirements and certified the health of more than 650,000 exports, securing economic opportunities for U.S. products abroad. These successes underscore how PPQ is working every day to keep U.S. agriculture healthy and profitable.


Diversity ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 185
Author(s):  
Maryam Shahrtash ◽  
Shawn P. Brown

Fungal endophytes play important roles in plant fitness and plant–microbe interactions. Kudzu (Pueraria montana var. lobata) is a dominant, abundant, and highly aggressive invasive plant in the Southeast United States. Kudzu serves as a pathogen reservoir that impacts economically important leguminous crops. We conducted the first investigations on kudzu fungal endophytes (Illumina MiSeq—ITS2) to elucidate drivers of endophytic communities across the heart of the invasive range in the Southeast United States (TN, MS, AL, GA). We tested the impacts of multiple environmental parameters (Chlorophyll, NO3−, K+, soil pH, leaf area, host genotype, traffic intensity, and geographic location) on foliar endophyte communities. Endophytic communities were diverse and structured by many factors in our PerMANOVA analyses, but location, genotype, and traffic (proxy for pollution) were the strongest drivers of community composition (R2 = 0.152, p < 0.001, R2 = 0.129, p < 0.001, and R2 = 0.126, p < 0.001, respectively). Further, we examined the putative ecological interactions between endophytic fungi and plant pathogens. We identify numerous OTUs that are positively and strongly associated with pathogen occurrence, largely within the families Montagnulaceae and Tremellales incertae sedis. Taken together, these data suggest location, host genetics and local pollution play instrumental roles in structuring communities, and integrative plant management must consider these factors when developing management strategies.


Weed Science ◽  
2007 ◽  
Vol 55 (6) ◽  
pp. 626-630 ◽  
Author(s):  
Kirk W. Davies ◽  
Roger L. Sheley

Controlling invasive plant infestations is very costly and often unsuccessful. Preventing invasions is more cost-effective than controlling invasive plants after they are established. Because prevention guidelines do not suggest any tools or methods to limit wind dispersal of invasive plant seeds, we investigated the influence of neighboring vegetation height on seed dispersal of a wind-dispersed (yellow salsify) and nonwind-dispersed (medusahead) species. To examine the influence of neighboring vegetation height on dispersal, seeds of both species were released in front of an artificial stand of desert wheatgrass in a modified wind tunnel. Treatments were a complete factorial design with two species, four vegetation heights (10, 30, 40, and 60 cm), three wind speeds (3, 5.5, and 10 km h−1), and three release distances from the neighboring vegetation (0, 15, and 30 cm). The ability of medusahead and yellow salsify seeds to disperse was influenced by the height of neighboring vegetation. Increasing height of neighboring vegetation decreased the number of yellow salsify seeds dispersing across neighboring vegetation. The greatest percentage of medusahead seeds dispersed across the neighboring vegetation was at the shortest height. Based on these results, we suggest that maintaining or promoting tall vegetation neighboring invasive plant infestations may reduce wind dispersal of seeds. More research is needed to investigate the influence of varying heights, densities, structural attributes, and composition of vegetation neighboring infestations and the dispersal of invasive plants.


Rangelands ◽  
2012 ◽  
Vol 34 (6) ◽  
pp. 6-10 ◽  
Author(s):  
Roger L. Sheley ◽  
Brenda S. Smith

2020 ◽  
Vol 13 (2) ◽  
pp. 108-113
Author(s):  
Scott R. Abella ◽  
Lindsay P. Chiquoine ◽  
Jeremy M. Moss ◽  
Eric D. Lassance ◽  
Charles D. Schelz

AbstractThere is a continual need for invasive plant science to develop approaches for cost-effectively benefiting native over nonnative species in dynamic management and biophysical contexts, including within predominantly nonnative plant landscapes containing only small patches of native plants. Our objective was to test the effectiveness of a minimal-input strategy for enlarging native species patches within a nonnative plant matrix. In Pecos National Historical Park, New Mexico, USA, we identified 40 native perennial grass patches within a matrix of the nonnative annual forb kochia [Bassia scoparia (L.) A.J. Scott]. We mechanically cut B. scoparia in a 2-m-wide ring surrounding the perimeters of half the native grass patches (with the other half as uncut controls) and measured change in native grass patch size (relative to pretreatment) for 3 yr. Native grass patches around which B. scoparia was cut grew quickly the first posttreatment year and by the third year had increased in size four times more than control patches. Treated native grass patches expanded by an average of 25 m2, from 4 m2 in October 2015 before treatment to 29 m2 in October 2018. The experiment occurred during a dry period, conditions that should favor B. scoparia and contraction of the native grasses, suggesting that the observed increase in native grasses occurred despite suboptimal climatic conditions. Strategically treating around native patches to enlarge them over time showed promise as a minimal-input technique for increasing the proportion of the landscape dominated by native plants.


Sign in / Sign up

Export Citation Format

Share Document