Coexpression of Vitreoscilla Hemoglobin Reduces the Toxic Effect of Expression of D-Amino Acid Oxidase in E. coli

2004 ◽  
Vol 20 (5) ◽  
pp. 1359-1365 ◽  
Author(s):  
L.-J. Chien ◽  
J.-M. Wu ◽  
I.-C. Kuan ◽  
C.-K. Lee
2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zhiliang Yu ◽  
Ning Zhou ◽  
Hua Qiao ◽  
Juanping Qiu

L-amino acid oxidase (LAAO) is attracting more attentions due to its broad and important biological functions. Recently, an LAAO-producing marine microorganism (strain B3) was isolated from the intertidal zone of Dinghai sea area, China. Physiological, biochemical, and molecular identifications together with phylogenetic analysis congruously suggested that it belonged to the genusPseudoalteromonas. Therefore, it was designated asPseudoalteromonassp. B3. Its capability of LAAO production was crossly confirmed by measuring the products of H2O2, a-keto acids, andNH4+in oxidization reaction. Two rounds of PCR were performed to gain the entire B3-LAAO gene sequence of 1608 bps in length encoding for 535 amino acid residues. This deduced amino acid sequence showed 60 kDa of the calculated molecular mass, supporting the SDS-PAGE result. Like most of flavoproteins, B3-LAAO also contained two conserved typical motifs, GG-motif andβαβ-dinucleotide-binding domain motif. On the other hand, its unique substrate spectra and sequence information suggested that B3-LAAO was a novel LAAO. Our results revealed that it could be functionally expressed inE. coliBL21(DE3) using vectors, pET28b(+) and pET20b(+). However, compared with the native LAAO, the expression level of the recombinant one was relatively low, most probably due to the formation of inclusion bodies. Several solutions are currently being conducted in our lab to increase its expression level.


2018 ◽  
Vol 54 (4A) ◽  
pp. 123
Author(s):  
Vu Thi Hanh

The synthesis of 7-ACA from cephalosporin C (CPC) by a two-step bioconversion using D-amino acid oxidase (DAAO) and glutaryl 7-ACA acylase (GLA) has been effectively and largely applied in pharmaceutical industry. In this study, the gene gla coding for 720-amino acid GLA from plasmid pUC57::gla was analyzed and successfully inserted into vector pET22b(+) to form expression vector pET22b(+)::gla. The newly constructed expression vector pET22b(+)::gla was cloned and then transformed into Escherichia coli BL21(DE3) to generate recombinant strain E. coli BL21(DE3)[pET22b(+)::gla]. The suitable conditions for expression of gla gene were in LB medium at 30 oC and induced by 0.4 mM of Isopropyl β-D-1-thiogalactopyranoside (IPTG) for 3 hours. Under the chosen culturing parameters, expression of gla gene by E. coli BL21(DE3)/[pET22b(+)::gla] resulted in a recombinant GLA (rGLA) with molecular weight of 83 kDa and catalytic activity of 2.7 U/mg of total protein. Experimental research on immobilization of rGLA onto ten nanoporous materials were showed that, SBA-15 was the best one for immobilization of rGLA, reaching activity of immobilized enzyme of 22.2 U/g matrix. Furthermore, optimal conditions of procedure for immobilizing rGLA on nanomaterials (SBA-15) were determined as follows: temperature is 25 °C, pH7.0 and immobilization time –60 minutes. Therefore the results reported in this study revealed the successfully heterologous expression of GLA in recombinant E. coli and potential immobilization of enzyme on inorganic nano-materials.


2021 ◽  
Vol 11 (1) ◽  
pp. 21-29
Author(s):  
Ho Ta Giap ◽  
Phan Ngoc Han ◽  
Tran Le Duy Phuong ◽  
Phung Thi Thu Phung ◽  
Vu Van Van

Introduction: The level of serum HbA1c is an indicator of the average blood sugar level in the last three months. HbA1c can be quantified using assays involving the enzyme fructosyl amino acid oxidase (FAOX). This study aims to produce GST-tagged FAOX-TE (GST/FAOX-TE), a thermal stable and specific variant of FAOX, for future application studies. Materials and methods: The E. coli strains DH5α and BL21 (DE3) were used as cloning and expression hosts, respectively. The FAOX-TE sequence was synthesized at IDT (US) and clonned into pGEX-4T3 vector, which was confirmed by Colony PCR. The expression was induced at 16°C, 0.5 mM IPTG in LB media containing 50 µg/ml ampicilin. The protein expression profile was analyzed by SDS-PAGE. The cell pellet was sonicated and purified by Glutathione Sepharose 4 Fast Flow (Cytiva, US). The catalytic activity of GST/FAOX-TE with fructosyl valine was determined using high performance anion exchange chromatography with pulsed amperometry detection (HPAEC-PAD). Results: The fusion protein was successfully expressed in Escherichia coli using the plasmid pGEX-4T3 and purified to high purity 93%. Recombinant GST/FAOX-TE was shown to be active on fructosyl valine. Conclusions: Active GST/FAOX-TE was successfully expressed in E. coli BL21 (DE3) and purified, which will be used for future development of biosensors for fructosyl valine quantification.


2019 ◽  
Vol 6 (4) ◽  
pp. 182035 ◽  
Author(s):  
Licheng Wu ◽  
Xiaolei Guo ◽  
Gaobing Wu ◽  
Pengfu Liu ◽  
Ziduo Liu

α-keto acids are compounds of primary interest for the fine chemical, pharmaceutical and agrochemical sectors. l -amino acid oxidases as an efficient tool are used for α-keto acids preparation in this study. Firstly, an l -amino acid oxidase ( Pmi LAAO) from Proteus mirabilis was discovered by data mining . Secondly, by gene expression vector screening, pETDuet-1- Pmi LAAO activity improved by 130%, as compared to the pET20b- Pmi LAAO. Pmi LAAO production was increased to 9.8 U ml −1 by optimized expression condition (OD 600 = 0.65, 0.45 mmol l −1 IPTG, 20 h of induction). Furthermore, The Pmi LAAO was stabile in the pH range of 4.0–9.0 and in the temperature range of 10–40°C; the optimal pH and temperature of recombinant Pmi LAAO were 6.5 and 37°C, respectively. Afterwards, in order to simplify product separation process, E. coli -pETduet-1- Pmi LAAO was immobilized in Ca-alginate beads. Continuous production of 2-oxo-3-phenylpropanoic acid was conducted in a packed-bed reactor via immobilized E. coli -pETduet-1- Pmi LAAO. Significantly, 29.66 g l −1 2-oxo-3-phenylpropanoic acid with a substrate conversion rate of 99.5% was achieved by correspondingly increasing the residence time (25 h). This method holds the potential to be used for efficiently producing pure α-keto acids.


1997 ◽  
Vol 58 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Loredano Pollegioni ◽  
Gianluca Molla ◽  
Stefano Campaner ◽  
Enzo Martegani ◽  
Mirella S Pilone

1996 ◽  
Vol 76 (06) ◽  
pp. 0993-0997
Author(s):  
Zhao-Yan Li ◽  
Xiao-Wei Wu ◽  
Tie-Fu Yu ◽  
Eric C-Y Lian

SummaryBy means of CM-Sephadex C-25, DEAE-Sephadex A-50, Sephadex G-200, and Sephadex G-75 chromatographies, a lupus anticoagulant like protein (LALP) from Agkistrodon halys brevicaudus was purified. On SDS-PAGE, the purified LALP had a molecular weight of 25,500 daltons under non-reducing condition and 15,000 daltons under reducing condition. The isoelectric point was pH 5.6. Its N terminal amino acid sequencing revealed a mixture of 2 sequences: DCP(P/S)(D/G)WSSYEGH(C/R)Q(Q/K). It was devoid of phospho-lipaseA, fibrino(geno)lytic, 5′-nucleotidase, L-amino acid oxidase, phosphomonoesterase, phosphodiesterase and thrombin-like activities, which were found in crude venom. In the presence of LALP, PT, aPTT, and dRVVT of human plasma were markedly prolonged and its effects were concentration-dependent but time-independent. The inhibitory effect of LALP on the plasma clotting time was enhanced by decreasing phospholipid concentration in TTI test. The individual clotting factor activity was not affected by LALP when higher dilutions of LALP-plasma mixture were used for assay. Russell’s viper venom time was shortened when high phospholipid confirmatory reagent was used. Therefore, the protein has lupus anticoagulant property.


1982 ◽  
Vol 48 (03) ◽  
pp. 277-282 ◽  
Author(s):  
I Nathan ◽  
A Dvilansky ◽  
T Yirmiyahu ◽  
M Aharon ◽  
A Livne

SummaryEchis colorata bites cause impairment of platelet aggregation and hemostatic disorders. The mechanism by which the snake venom inhibits platelet aggregation was studied. Upon fractionation, aggregation impairment activity and L-amino acid oxidase activity were similarly separated from the crude venom, unlike other venom enzymes. Preparations of L-amino acid oxidase from E.colorata and from Crotalus adamanteus replaced effectively the crude E.colorata venom in impairment of platelet aggregation. Furthermore, different treatments known to inhibit L-amino acid oxidase reduced in parallel the oxidase activity and the impairment potency of both the venom and the enzyme preparation. H2O2 mimicked characteristically the impairment effects of L-amino acid oxidase and the venom. Catalase completely abolished the impairment effects of the enzyme and the venom. It is concluded that hydrogen peroxide formed by the venom L-amino acid oxidase plays a role in affecting platelet aggregation and thus could contribute to the extended bleeding typical to persons bitten by E.colorata.


Sign in / Sign up

Export Citation Format

Share Document