Self-Assembly of Pentaphenol Adducts:  Formation of 3D Network and Ladder-type Supramolecular Structures in the Solid State

2006 ◽  
Vol 6 (3) ◽  
pp. 636-642 ◽  
Author(s):  
Akhila Jayaraman ◽  
Venkataramanan Balasubramaniam ◽  
Suresh Valiyaveettil
Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4422 ◽  
Author(s):  
Moreno-Alcántar ◽  
Salazar ◽  
Romo-Islas ◽  
Flores-Álamo ◽  
Torrens

Despite the recurrence of aurophilic interactions in the solid-state structures of gold(I) compounds, its rational control, modulation, and application in the generation of functional supramolecular structures is an area that requires further development. The ligand effects over the aurophilic-based supramolecular structures need to be better understood. This paper presents the supramolecular structural diversity of a series of new 1,3-bis(diphenylphosphane)propane (dppp) gold(I) fluorinated thiolates with the general formula [Au2(SRF)2(μ-dppp)] (SRF = SC6F5 (1); SC6HF4-4 (2); SC6H3(CF3)2-3,5 (3); SC6H4CF3-2 (4); SC6H4CF3-4 (5); SC6H3F2-3,4 (6); SC6H3F2-3,5 (7); SC6H4F-2 (8); SC6H4F-3 (9); SC6H4F-4 (10)). These compounds were synthesized and characterized, and six of their solid-state crystalline structures were determined using single-crystal X-ray diffraction. In the crystalline arrangement, they form aurophilic-bridged polymers. In these systems, the changes in the fluorination patterns of the thiolate ligands tune the aurophilic-induced self-assembly of the compounds causing tacticity and chiral differentiation of the monomers. This is an example of the use of ligand effects on the tune of the supramolecular association of gold complexes.


2006 ◽  
Vol 6 (1) ◽  
pp. 150-160 ◽  
Author(s):  
Akhila Jayaraman ◽  
Venkataramanan Balasubramaniam ◽  
Suresh Valiyaveettil

2021 ◽  
Vol 522 ◽  
pp. 120373
Author(s):  
Alexander G. Tskhovrebov ◽  
Alexander S. Novikov ◽  
Boris S. Tupertsev ◽  
Alexey A. Nazarov ◽  
Anastasia A. Antonets ◽  
...  

2016 ◽  
Vol 45 (9) ◽  
pp. 3974-3982 ◽  
Author(s):  
Riccardo Pettinari ◽  
Fabio Marchetti ◽  
Claudio Pettinari ◽  
Francesca Condello ◽  
Brian W. Skelton ◽  
...  

Mono- and tetranuclear Ru(ii) half-sandwich complexes containing acylpyrazolone ligands. 13C and 15N solid state NMR spectroscopy.


2016 ◽  
Vol 52 (10) ◽  
pp. 2133-2136 ◽  
Author(s):  
Krunoslav Užarević ◽  
Timothy C. Wang ◽  
Su-Young Moon ◽  
Athena M. Fidelli ◽  
Joseph T. Hupp ◽  
...  

Mechanochemistry and accelerated aging are new routes to zirconium metal–organic frameworks, yielding UiO-66 and catalytically active UiO-66-NH2 accessible on the gram scale through mild solid-state self-assembly, without strong acids, high temperatures or excess reactants.


2011 ◽  
Vol 31 (4) ◽  
pp. 1546-1558 ◽  
Author(s):  
Ami Doshi ◽  
Anand Sundararaman ◽  
Krishnan Venkatasubbaiah ◽  
Lev N. Zakharov ◽  
Arnold L. Rheingold ◽  
...  

2013 ◽  
Vol 24 (1) ◽  
pp. 243-257 ◽  
Author(s):  
Yunshan Zhou ◽  
Sadaf ul Hassan ◽  
Lijuan Zhang ◽  
Xianqi Li ◽  
Waqar Ahmad
Keyword(s):  

2014 ◽  
Vol 70 (11) ◽  
pp. 1040-1045 ◽  
Author(s):  
Majid I. Tamboli ◽  
Vir Bahadur ◽  
Rajesh G. Gonnade ◽  
Mysore S. Shashidhar

Racemic 2,4(6)-di-O-benzoyl-myo-inositol 1,3,5-orthoformate, C21H18O8,(1), shows a very efficient intermolecular benzoyl-group migration reaction in its crystals. However, the presence of 4,4′-bipyridine molecules in its cocrystal, C21H18O8·C10H8N2,(1)·BP, inhibits the intermolecular benzoyl-group transfer reaction. In(1), molecules are assembled around the crystallographic twofold screw axis (baxis) to form a helical self-assembly through conventional O—H...O hydrogen-bonding interactions. This helical association places the reactive C6-O-benzoyl group (electrophile, El) and the C4-hydroxy group (nucleophile, Nu) in proximity, with a preorganized El...Nu geometry favourable for the acyl transfer reaction. In the cocrystal(1)·BP, the dibenzoate and bipyridine molecules are arranged alternately through O—H...N interactions. The presence of the bipyridine molecules perturbs the regular helical assembly of the dibenzoate molecules and thus restricts the solid-state reactivity. Hence, unlike the parent dibenzoate crystals, the cocrystals do not exhibit benzoyl-transfer reactions. This approach is useful for increasing the stability of small molecules in the crystalline state and could find application in the design of functional solids.


Sign in / Sign up

Export Citation Format

Share Document