scholarly journals Mechanochemical and solvent-free assembly of zirconium-based metal–organic frameworks

2016 ◽  
Vol 52 (10) ◽  
pp. 2133-2136 ◽  
Author(s):  
Krunoslav Užarević ◽  
Timothy C. Wang ◽  
Su-Young Moon ◽  
Athena M. Fidelli ◽  
Joseph T. Hupp ◽  
...  

Mechanochemistry and accelerated aging are new routes to zirconium metal–organic frameworks, yielding UiO-66 and catalytically active UiO-66-NH2 accessible on the gram scale through mild solid-state self-assembly, without strong acids, high temperatures or excess reactants.

2019 ◽  
Vol 141 (26) ◽  
pp. 10350-10360 ◽  
Author(s):  
Rosa Adam ◽  
Marta Mon ◽  
Rossella Greco ◽  
Lucas H. G. Kalinke ◽  
Alejandro Vidal-Moya ◽  
...  

2020 ◽  
Vol 8 (12) ◽  
pp. 6034-6040 ◽  
Author(s):  
Yanan Wang ◽  
Wenlong Zhen ◽  
Yiqing Zeng ◽  
Shipeng Wan ◽  
Haiwei Guo ◽  
...  

A series of Zr-porphyrin metal–organic framework (Zr-PMOF)/ultrathin g-C3N4 (UCN) heterostructure photocatalysts, as stable and efficient catalysts for the photoreduction of CO2, have been fabricated via a facile in situ hydrothermal self-assembly method.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Tz-Han Wei ◽  
Shi-Hong Wu ◽  
Yi-Da Huang ◽  
Wei-Shang Lo ◽  
Benjamin P. Williams ◽  
...  

Abstract Metal–organic frameworks (MOFs) have recently garnered consideration as an attractive solid substrate because the highly tunable MOF framework can not only serve as an inert host but also enhance the selectivity, stability, and/or activity of the enzymes. Herein, we demonstrate the advantages of using a mechanochemical strategy to encapsulate enzymes into robust MOFs. A range of enzymes, namely β-glucosidase, invertase, β-galactosidase, and catalase, are encapsulated in ZIF-8, UiO-66-NH2, or Zn-MOF-74 via a ball milling process. The solid-state mechanochemical strategy is rapid and minimizes the use of organic solvents and strong acids during synthesis, allowing the encapsulation of enzymes into three prototypical robust MOFs while maintaining enzymatic biological activity. The activity of encapsulated enzyme is demonstrated and shows increased resistance to proteases, even under acidic conditions. This work represents a step toward the creation of a suite of biomolecule-in-MOF composites for application in a variety of industrial processes.


2021 ◽  
Vol 57 (29) ◽  
pp. 3587-3590
Author(s):  
Beili Yi ◽  
Haojie Zhao ◽  
Yue Zhang ◽  
Xiaomeng Si ◽  
Guanqun Zhang ◽  
...  

We propose a novel solvent-free conversion strategy of Pt–ZnO to Pt-ZIF-8. This synthesis strategy may facilitate the discovery of MMOFs that have not been reported previously.


2021 ◽  
Author(s):  
Cornelia Elizabeth Pompe ◽  
Petra Agota Szilagyi

Metal-organic frameworks are promising host supporting matrices for catalytically active guest. In particular, their crystallinity renders them desirable as their pores may act as atom-precise templates for the growth of...


Author(s):  
Haonan Lin ◽  
Cheng-Hua Deng ◽  
Xiaohang Qiu ◽  
Xiao Liu ◽  
Jian-Gong Ma ◽  
...  

2021 ◽  
Author(s):  
Dae-Woon Lim ◽  
Hiroshi Kitagawa

Since the transition of energy platforms, the proton-conductive metal–organic frameworks (MOFs) exhibiting high performance have been extensively investigated with rational strategies for their potential application in solid-state electrolytes.


Sign in / Sign up

Export Citation Format

Share Document