Self-Adjusted, Three-Dimensional Lattice-Matched Buffer Layer for Growing ZnO Epitaxial Film:  Homologous Series Layered Oxide, InGaO3(ZnO)5

2006 ◽  
Vol 6 (11) ◽  
pp. 2451-2456 ◽  
Author(s):  
Toshio Kamiya ◽  
Yujiro Takeda ◽  
Kenji Nomura ◽  
Hiromichi Ohta ◽  
Hiroshi Yanagi ◽  
...  
1991 ◽  
Vol 06 (39) ◽  
pp. 3591-3600 ◽  
Author(s):  
HIROSI OOGURI ◽  
NAOKI SASAKURA

It is shown that, in the three-dimensional lattice gravity defined by Ponzano and Regge, the space of physical states is isomorphic to the space of gauge-invariant functions on the moduli space of flat SU(2) connections over a two-dimensional surface, which gives physical states in the ISO(3) Chern–Simons gauge theory. To prove this, we employ the q-analogue of this model defined by Turaev and Viro as a regularization to sum over states. A recent work by Turaev suggests that the q-analogue model itself may be related to an Euclidean gravity with a cosmological constant proportional to 1/k2, where q=e2πi/(k+2).


1994 ◽  
Vol 340 ◽  
Author(s):  
L. E. Rumaner ◽  
F.S. Ohuchi

ABSTRACTAlthough heteroepitaxy of lattice-matched and lattice-mismatched materials leading to artificially structured materials has resulted in impressive performance in various electronics devices, material combinations are usually limited by lattice matching constraints. A new concept for fabricating material systems using the atomically abrupt and low dimensional nature of layered materials, called van der Waals epitaxy (VDWE), has been developed. GaSe (Eg = 2.1 eV) has been deposited on the three dimensional surface of GaAs (111) using a molecular beam deposition system. GaSe was evaporated from a single Knudsen source, impinging on a heated substrate. Even with a lattice mismatch of 6% between the substrate and the growing film, good quality single crystal films were grown as determined by RHEED. The films have further been analyzed using a complementary combination of XPS and X-ray reflectivity.


1993 ◽  
Vol 48 (5) ◽  
pp. 2290-2298 ◽  
Author(s):  
Howard D. Trottier ◽  
R. M. Woloshyn

2013 ◽  
Vol 1493 ◽  
pp. 245-251 ◽  
Author(s):  
Yongkun Sin ◽  
Stephen LaLumondiere ◽  
Brendan Foran ◽  
William Lotshaw ◽  
Steven C. Moss ◽  
...  

ABSTRACTMulti-junction III-V solar cells are based on a triple-junction design that employs a 1eV bottom junction grown on the GaAs substrate with a GaAs middle junction and a lattice-matched InGaP top junction. There are two possible approaches implementing the triple-junction design. The first approach is to utilize lattice-matched dilute nitride materials such as InGaAsN(Sb) and the second approach is to utilize lattice-mismatched InGaAs employing a metamorphic buffer layer (MBL). Both approaches have a potential to achieve high performance triple-junction solar cells. A record efficiency of 43.5% was achieved from multi-junction solar cells using the first approach [1] and the solar cells using the second approach yielded an efficiency of 41.1% [2]. We studied carrier dynamics and defects in bulk 1eV InGaAsNSb materials and InGaAs layers with MBL grown by MOVPE for multi-junction solar cells.


Sign in / Sign up

Export Citation Format

Share Document