Microengineering of Supramolecular Soft Materials by Design of the Crystalline Fiber Networks

2010 ◽  
Vol 10 (6) ◽  
pp. 2699-2706 ◽  
Author(s):  
Jing-Liang Li ◽  
Bing Yuan ◽  
Xiang-Yang Liu ◽  
Hong-Yao Xu
2021 ◽  
Author(s):  
Xuanhe Zhao ◽  
Xiaoyu Chen ◽  
Hyunwoo Yuk ◽  
Shaoting Lin ◽  
Xinyue Liu ◽  
...  

MRS Advances ◽  
2019 ◽  
Vol 4 (23) ◽  
pp. 1327-1334 ◽  
Author(s):  
Sushmita Challa ◽  
Canisha Ternival ◽  
Shafquatul Islam ◽  
Jasmin Beharic ◽  
Cindy Harnett

ABSTRACTStretchable electronics fabrication generally relies on fine-tuning adhesion forces, putting some restrictions on what the carrier layer can be. In contrast to adhesion, mechanical tangling makes more kinds of carrier materials available. Antibacterial, conductive, heat-responsive and other functions can be brought in by fiber networks as long as they are compatible with the highly selective silicon etch process. Mechanical grippers can also bring electronic contacts from one side of a mesh to the other, which is difficult to do on continuous thin films of other soft materials like silicone or polyimide. Our solution uses mechanical strain to produce large arrays of redundant grippers from planar thin-film designs.


2013 ◽  
Vol 15 (9) ◽  
pp. 3313 ◽  
Author(s):  
Rong-Yao Wang ◽  
Peng Wang ◽  
Jing-Liang Li ◽  
Bing Yuan ◽  
Yu Liu ◽  
...  

2018 ◽  
Vol 91 (10) ◽  
pp. 365-369
Author(s):  
Mikihito TAKENAKA

Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 15 ◽  
Author(s):  
Nikolay V. Perepelkin ◽  
Feodor M. Borodich ◽  
Alexander E. Kovalev ◽  
Stanislav N. Gorb

Classical methods of material testing become extremely complicated or impossible at micro-/nanoscale. At the same time, depth-sensing indentation (DSI) can be applied without much change at various length scales. However, interpretation of the DSI data needs to be done carefully, as length-scale dependent effects, such as adhesion, should be taken into account. This review paper is focused on different DSI approaches and factors that can lead to erroneous results, if conventional DSI methods are used for micro-/nanomechanical testing, or testing soft materials. We also review our recent advances in the development of a method that intrinsically takes adhesion effects in DSI into account: the Borodich–Galanov (BG) method, and its extended variant (eBG). The BG/eBG methods can be considered a framework made of the experimental part (DSI by means of spherical indenters), and the data processing part (data fitting based on the mathematical model of the experiment), with such distinctive features as intrinsic model-based account of adhesion, the ability to simultaneously estimate elastic and adhesive properties of materials, and non-destructive nature.


A description is given of the experimental technique devised to apply the method outlined theoretically in part I to the measurement of the dynamic compressive yield strength of various steels, duralumin, copper, lead, iron and silver. A polished piece of armour steel was employed as a target, and cylindrical specimens were fired at it at various measured velocities from Service weapons. The distance between the weapon and target was made short to ensure normal impact, and apparatus was devised for the precise measurement of striking velocity over this short range. The dynamic compressive yield strength was computed from the density of the specimen, the striking velocity, and from measurements of the dimensions of the test piece before and after test. Details are given of the accuracy of the various measurements, and of their effect on the values of yield strength. The method was found to be inaccurate at low and high velocities. For instance, with mild steel, satisfactory results were only obtainable within the range 400 to 2500 ft. /sec. The range of velocities within which satisfactory results could be obtained varied with the quality of the material tested, soft metals giving results within a much lower range than that necessary for harder materials. Because of its failure at low velocities, the method could not be employed to bridge the gap between static and dynamic tests. The rate of strain employed in the dynamic tests could not be measured, but was estimated to be of the order of 10,000 in. /in. /sec. With the materials tested little change of dynamic strength occurred within the range of striking velocities employed, probably because the rate of strain did not vary to any great extent with the striking velocity. Within the range of weapons available, that is, from a 0·303 in. rifle up to a 13 pdr. gun (calibre 3·12 in.), little change of dynamic strength occurred with alteration of the initial dimensions of the specimens, probably because the corresponding change of rate of strain was not large. In general, the dynamic compressive yield strength S was greater than the static strength Y represented by the compressive stress giving 0·2% permanent strain. For steels of various types, regardless of chemical composition and heat treatment, there was a relation between S / Y and the static strength Y , the ratio decreasing from approximately 3 when Y was 20 tons/sq. in. to 1 when Y was 120 tons/sq. in. A similar relation occurred with duralumin, S / Y varying from 2·5 at Y = 8 tons/sq. in. to 1·4 at Y = 25 tons/sq. in. Dynamic compressive yield values were obtained for soft materials such as pure lead, copper and Armco iron, which, under static conditions, gave no definite yield values. A plot of the unstrained length of the specimen X , expressed as X / L (where L = initial overall length), versus the final overall length L 1 , expressed as L 1 / L , was made for the various materials. Any specified value of X / L was associated with greater values of L 1 / L for the more ductile materials, such as copper and lead, than for the brittle materials, such as armour plate and duralumin.


2021 ◽  
Vol 10 (8) ◽  
pp. 2170039
Author(s):  
Yuanbo Jia ◽  
Yanzhong Wang ◽  
Lele Niu ◽  
Hang Zhang ◽  
Jin Tian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document