Assessing Molecular Docking Tools for Relative Biological Activity Prediction: A Case Study of Triazole HIV-1 NNRTIs

2013 ◽  
Vol 53 (12) ◽  
pp. 3326-3342 ◽  
Author(s):  
Tomasz Frączek ◽  
Agata Siwek ◽  
Piotr Paneth

2018 ◽  
Vol 16 (2) ◽  
pp. 153-159 ◽  
Author(s):  
Jianbo Tong ◽  
Shan Lei ◽  
Pei Zhan ◽  
Shangshang Qin ◽  
Yang Wang

Background: Acquired Immunodeficiency Syndrome (AIDS) caused by Human Immunodeficiency Virus (HIV) has seriously threatened human health, so development of new, selective and safe non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) remains a high priority for medical research. Diaryltriazine (DATA) have been identified as a new class of potent nonnucleoside HIV-1 Reverse Transcriptase (RT) inhibitors. The study deals with Topomer CoMFA (Comparative Molecular Field Analysis) and molecular docking to explore the important features of DATA analogues for exerting potent HIV-1 RT inhibitors activity. Methods: In this work, 40 DATA analogues were studied using a combination of molecular modeling techniques including Three-Dimensional Quantitative Structure–Activity Relationship (3D-QSAR), molecular docking, and Topomer CoMFA were used to build 3D-QSAR models. Results: The results show that the Topomer CoMFA analysis has the cross-validation q2 = 0.800, SDCV = 0.45, the non-cross-validated r2 = 0.958, SD = 0.21, and the correlation coefficient of external validation Q2 ext = 0.965 showed that the model is reasonable and credible, and has a good predictive ability. Then binding mode pattern of the compounds to the binding site of enzyme was confirmed and the mechanism of drug and acceptor was studied by docking studies, the results showed that the drug and GLU138, LYS101, THR139 sites have an obvious function, these researches have provided an useful information for designing more effective HIV-1IN inhibitors. Conclusion: A series of 40 DATAs analogues was subjected to a 3D-QSAR study. Using Topomer CoMFA 3D-QSAR method built model, and the model has shown a good predictive and statistical validation. Substituent with low electronic density in the R5 and R3 positions and substituent with high electronic density in the R2 and C2 positions will increase the biological activity, small substituent on R4 positions and naphthyloxy as the spacer group C6 substituent hydrophobic will increase biological activity. This effect is supported by Topomer CoMFA contour map and docking results of HIV-1RT inhibition active site, the results of the 3D-QSAR and docking analyses have provided a guide for the synthesis of new putative inhibitors for HIV-1RT to improved inhibitory activity.



Author(s):  
URMILA PATEL ◽  
SANJAY TAILOR ◽  
RAHUL DUBEY, ◽  
KINJAL PATEL


2020 ◽  
Vol 26 (8) ◽  
pp. 802-814 ◽  
Author(s):  
Nemanja Turkovic ◽  
Branka Ivkovic ◽  
Jelena Kotur-Stevuljevic ◽  
Milica Tasic ◽  
Bojan Marković ◽  
...  

Background: Since the beginning of the HIV/AIDS epidemic, 75 million people have been infected with the HIV and about 32 million people have died of AIDS. Investigation of the molecular mechanisms critical to the HIV replication cycle led to the identification of potential drug targets for AIDS therapy. One of the most important discoveries is HIV-1 protease, an enzyme that plays an essential role in the replication cycle of HIV. Objective: The aim of the present study is to synthesize and investigate anti-HIV-1 protease activity of some chalcone derivatives with the hope of discovering new lead structure devoid drug resistance. Methods: 20 structurally similar chalcone derivatives were synthesized and their physico-chemical characterization was performed. Binding of chalcones to HIV-1 protease was investigated by fluorimetric assay. Molecular docking studies were conducted to understand the interactions. Results: The obtained results revealed that all compounds showed anti-HIV-1 protease activity. Compound C1 showed the highest inhibitory activity with an IC50 value of 0.001 μM, which is comparable with commercial product Darunavir. Conclusion: It is difficult to provide general principles of inhibitor design. Structural properties of the compounds are not the only consideration; ease of chemical synthesis, low molecular weight, bioavailability, and stability are also of crucial importance. Compared to commercial products the main advantage of compound C1 is the ease of chemical synthesis and low molecular weight. Furthermore, compound C1 has a structure that is different to peptidomimetics, which could contribute to its stability and bioavailability.





2015 ◽  
Vol 11 (2) ◽  
pp. 180-187 ◽  
Author(s):  
Liming Hu ◽  
Zhipeng Li ◽  
Zhanyang Wang ◽  
Gengxin Liu ◽  
Xianzhuo He ◽  
...  


Author(s):  
Shola Elijah Adeniji

Introduction: Mycobacterium tuberculosis has instigated a serious challenge toward the effective treatment of tuberculosis. The reoccurrence of the resistant strains of the disease to accessible drugs/medications has mandate for the development of more effective anti-tubercular agents with efficient activities. Time expended and costs in discovering and synthesizing new hypothetical drugs with improved biological activity have been a major challenge toward the treatment of multi-drug resistance strain M. tuberculosis (TB). Meanwhile, to solve the problem stated, a new approach i.e. QSAR which establish connection between novel drugs with a better biological against M. tuberculosis is adopted. Methods: The anti-tubercular model established in this study to forecast the biological activities of some anti-tubercular compounds selected and to design new hypothetical drugs is subjective to the molecular descriptors; MATS7s, SM1_DzZ, SpMin4_Bhv, TDB3v and RDF70v. Ligand-receptor interactions between quinoline derivatives and the receptor (DNA gyrase) was carried out using molecular docking technique by employing the PyRx virtual screening software and discovery studio visualizer software. Furthermore, docking study indicates that compounds 20 of the derivatives with promising biological activity have the utmost binding energy of -17.79 kcal/mol. Results: Meanwhile, the interaction of the standard drug; isoniazid with the target enzyme was observed with the binding energy -14.6 kcal/mol which was significantly lesser than the binding energy of the ligand (compound 20).Therefore, compound 20 served as a template structure to designed compounds with more efficient activities. Among the compounds designed; compounds 20p was observed with better anti-tubercular activities with more prominent binding affinities of -24.3kcal/mol. Conclusion: The presumption of this research aid the medicinal chemists and pharmacist to design and synthesis a novel drug candidate against the tuberculosis. Moreover, in-vitro and in-vivo test could be carried out to validate the computational results.



2018 ◽  
Vol 15 (2) ◽  
Author(s):  
Bhumika D. Patel ◽  
Nidhi Choksi ◽  
Kinjal Patel ◽  
Qureshi Gulamnizami


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2288
Author(s):  
Ahmed Gaber ◽  
Moamen S. Refat ◽  
Arafa A.M. Belal ◽  
Ibrahim M. El-Deen ◽  
Nader Hassan ◽  
...  

Herein, we report the synthesis of eight new mononuclear and binuclear Co2+, Ni2+, Cu2+, and Zn2+ methoxy thiosemicarbazone (MTSC) complexes aiming at obtaining thiosemicarbazone complex with potent biological activity. The structure of the MTSC ligand and its metal complexes was fully characterized by elemental analysis, spectroscopic techniques (NMR, FTIR, UV-Vis), molar conductivity, thermogravimetric analysis (TG), and thermal differential analysis (DrTGA). The spectral and analytical data revealed that the obtained thiosemicarbazone-metal complexes have octahedral geometry around the metal center, except for the Zn2+-thiosemicarbazone complexes, which showed a tetrahedral geometry. The antibacterial and antifungal activities of the MTSC ligand and its (Co2+, Ni2+, Cu2+, and Zn2+) metal complexes were also investigated. Interestingly, the antibacterial activity of MTSC- metal complexes against examined bacteria was higher than that of the MTSC alone, which indicates that metal complexation improved the antibacterial activity of the parent ligand. Among different metal complexes, the MTSC- mono- and binuclear Cu2+ complexes showed significant antibacterial activity against Bacillus subtilis and Proteus vulgaris, better than that of the standard gentamycin drug. The in silico molecular docking study has revealed that the MTSC ligand could be a potential inhibitor for the oxidoreductase protein.



Author(s):  
Milan Jovanović ◽  
Nemanja Turković ◽  
Branka Ivković ◽  
Zorica Vujić ◽  
Katarina Nikolić ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document