Quantitative structure-activity relationship model, molecular docking simulation and computational design of some novel compounds against DNA gyrase receptor.

Author(s):  
Shola Elijah Adeniji

Introduction: Mycobacterium tuberculosis has instigated a serious challenge toward the effective treatment of tuberculosis. The reoccurrence of the resistant strains of the disease to accessible drugs/medications has mandate for the development of more effective anti-tubercular agents with efficient activities. Time expended and costs in discovering and synthesizing new hypothetical drugs with improved biological activity have been a major challenge toward the treatment of multi-drug resistance strain M. tuberculosis (TB). Meanwhile, to solve the problem stated, a new approach i.e. QSAR which establish connection between novel drugs with a better biological against M. tuberculosis is adopted. Methods: The anti-tubercular model established in this study to forecast the biological activities of some anti-tubercular compounds selected and to design new hypothetical drugs is subjective to the molecular descriptors; MATS7s, SM1_DzZ, SpMin4_Bhv, TDB3v and RDF70v. Ligand-receptor interactions between quinoline derivatives and the receptor (DNA gyrase) was carried out using molecular docking technique by employing the PyRx virtual screening software and discovery studio visualizer software. Furthermore, docking study indicates that compounds 20 of the derivatives with promising biological activity have the utmost binding energy of -17.79 kcal/mol. Results: Meanwhile, the interaction of the standard drug; isoniazid with the target enzyme was observed with the binding energy -14.6 kcal/mol which was significantly lesser than the binding energy of the ligand (compound 20).Therefore, compound 20 served as a template structure to designed compounds with more efficient activities. Among the compounds designed; compounds 20p was observed with better anti-tubercular activities with more prominent binding affinities of -24.3kcal/mol. Conclusion: The presumption of this research aid the medicinal chemists and pharmacist to design and synthesis a novel drug candidate against the tuberculosis. Moreover, in-vitro and in-vivo test could be carried out to validate the computational results.

2020 ◽  
Vol 14 (10) ◽  
pp. 52
Author(s):  
Usman Abdulfatai ◽  
Adamu Uzairu ◽  
Gideon Adamu Shallangwa ◽  
Sani Uba

In this present investigation, simulated molecular docking study of chloroquine and hydroxychloroquine compounds were investigated on the SARS-CoV2 enzyme to determine the types of amino acids responsible for the biochemical reaction at the binding site. A structure-based docking design technique was explored in designing a novel derivative of chloroquine for the treatment and management of new COVID 19 disease. To achieve this, the molecular docking simulation method was used to investigate the level of chloroquine and hydroxychloroquine (Drugs presently under clinical trial) interactions on SARS-CoV2 enzyme (a causative agent of COVID 19 disease). Chloroquine and hydroxychloroquine which has been debated as drugs for the management of COVID 19 were subjected to molecular docking analysis, and the binding energies generated were found to be -6.1 kcal/mol and -6.8 kcal/mol respectively. Moreover, novel 2-((4-((7-chloroquinolin-4 yl) amino)pentyl)((methylamino)methyl)amino) ethan-1-ol as an anti-SARS-CoV2 protease was designed through the structural modification of hydroxychloroquine. The binding energy of this drug candidate was found to be -6.9 kcal/mol. This novel drug was found to formed hydrogen and conventional interactions with the binding site of SARS-CoV2 protease through amino acids such as Glutamic acid (GLU166), Glycine (GLY143), Phenylalanine (PHE140), Asparagine (ASN142), Histidine (HIS163), His (HIS172, HIS41, HIS163), Leucine (LEU41, LEU27), Glycine (GLY143), Glutamine (GLN189), Methionine (MET49, MET165), Serine (SER 46), Cysteine (CYS145) and Threonine (THR25). With this binding energy, this new drug candidate could bind better to the human SARS-CoV2 protease’ binding site. This research provides a clue for other scientists on various ways of designing and identify the types of amino acids that may be responsible for biochemical action on SARS-CoV2 protease.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Taufik Muhammad Fakih ◽  
Dwi Syah Fitra Ramadhan ◽  
Fitrianti Darusman

The main protease of the SARS-CoV-2 virus, SARS-CoV-2 Mpro, can be discovered as a promising target to treat the COVID-19 pandemic. The peptide-based inhibitors may present better options than small molecules for inhibits SARS-CoV-2 Mpro. Ziziphus spina-christi species reported have a peptide-based of alkaloids group, i.e. Amphibine that the analogues can be identified the potential as an inhibitor of SARS-CoV-2 Mpro. The compound structure was drawn and optimized using semi-empirical AM-1 method using Quantum ESPRESSO v.6.6, then the biological activity using PASS Prediction server and molecular docking simulation using MGLTools 1.5.6 with AutoDock 4.2 were performed. Afterward, the ADME profiles were predicted using the SWISS-ADME server. PASS server was predicting Amphibine B-F and H showed potency both as antiviral and as a protease inhibitor. The molecular docking simulation of Amphibine analogues showed lower binding energy than the native ligand. The binding energy of the native ligand was −7.69 Kcal/mol compared to the lowest binding energy of Amphibine analogues was −10.10 Kcal/mol (Amphibine-F). The ADME prediction showed, as an oral drug Amphibine-F has the best bioavailability, Amphibine-B, C, and D have good bioavailability, and Amphibine-E and H have poor bioavailability. Concluded, Amphibine B-F and H of Amphibine analogues showed potency as COVID-19 treatment targeting SARS-CoV-2 Mpro.


2020 ◽  
Vol 17 ◽  
Author(s):  
Deepak Kumar Singh ◽  
Mayank Kulshreshtha ◽  
Yogesh Kumar ◽  
Pooja A Chawla ◽  
Akash Ved ◽  
...  

Background: The pyrazolines give the reactions of aliphatic derivatives, resembling unsaturated compounds in their behavior towards permanganate and nascent hydrogen. This nucleus has been associated with various biological activities including inflammatory. Thiazolinone is a heterocyclic compound that contains both sulfur and nitrogen atom with a carbonyl group in their structure.Thiazolinone and their derivatives have attracted continuing interest because of their various biological activities, such as anti-inflammatory, antimicrobial, anti-proliferative, antiviral, anticonvulsant etc. The aim of the research was to club pyrazoline nucleus with thiazolinone in order to have significantanti-inflammatory activity. The synthesized compounds were chemically characterized for the establishment of their chemical structures and to evaluate as anti-inflammatory agent. Method: In the present work, eight derivatives of substituted pyrazoline (PT1-PT8) were synthesized by a three step reaction.The compounds were subjected to spectral analysis by Infrared, Mass and Nuclear magnetic resonance spectroscopy and elemental analysis data. All the synthesized were evaluated for their in vivo anti-inflammatory activity. The synthesized derivatives were evaluated for their affinity towards target COX-1 and COX-2, using indomethacin as the reference compound molecular docking visualization through AutoDock Vina. Results: Compounds PT-1, PT-3, PT-4 and PT-8 exhibited significant anti-inflammatory activity at 3rd hour being 50.7%, 54.3%, 52.3% and 57% respectively closer to that of the standard drug indomethacin (61.9%).From selected anti-inflammatory targets, the synthesized derivatives exhibited better interaction with COX-1 and COX-2 receptor, where indomethacin showed docking score of -6.5 kJ/mol, compound PT-1 exhibited highest docking score of -9.1 kJ/mol for COX-1 and compound PT-8 having docking score of 9.4 kJ/mol for COX-2. Conclusion: It was concluded that synthesized derivatives have more interaction with COX-2 receptors in comparison to the COX-1 receptors because the docking score with COX-2 receptors were very good. It is concluded that the synthesized derivatives (PT-1 to PT-8) are potent COX-2 inhibitors.


2020 ◽  
Vol 10 (1) ◽  
pp. 4929-4933

As one of the most complex diseases in the world, cancer continues as one of the significant public health problems. It was recorded by 2014 that cancer caused 1,551,000 death in Indonesia. One type of programmed cell death (PCD) that played a role in cancer cell treatment is Ferroptosis. Ferroptosis is PCD on iron and characterized by the inactivation of glutathione-dependent peroxidase (GPx4). In this research, a new therapeutic strategy for cancer was developed through the computational approach on synthetic compounds to discover its potential as an inhibitor of GPx4. About 688 compounds derivative from mercaptosuccinic acid acquired from the Zinc15 database. These compounds screened through the Lipinski’s Rule of Three and pharmacological prediction to eliminate ligands with undesired molecular properties. After that, the ligands underwent both rigid and flexible molecular docking simulations to predict their inhibition activity toward GPx4. From molecular docking simulation, (2S)-2-[(Z)-3-phenylprop-2-enyl]sulfanylbutanedioic acid show favorable characteristics as a drug candidate.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5957
Author(s):  
Syed Amir Ashraf ◽  
Abd Elmoneim O. Elkhalifa ◽  
Khalid Mehmood ◽  
Mohd Adnan ◽  
Mushtaq Ahmad Khan ◽  
...  

Diabetes mellitus is a global threat affecting millions of people of different age groups. In recent years, the development of naturally derived anti-diabetic agents has gained popularity. Okra is a common vegetable containing important bioactive components such as abscisic acid (ABA). ABA, a phytohormone, has been shown to elicit potent anti-diabetic effects in mouse models. Keeping its anti-diabetic potential in mind, in silico study was performed to explore its role in inhibiting proteins relevant to diabetes mellitus- 11β-hydroxysteroid dehydrogenase (11β-HSD1), aldose reductase, glucokinase, glutamine-fructose-6-phosphate amidotransferase (GFAT), peroxisome proliferator-activated receptor-gamma (PPAR-gamma), and Sirtuin family of NAD(+)-dependent protein deacetylases 6 (SIRT6). A comparative study of the ABA-protein docked complex with already known inhibitors of these proteins relevant to diabetes was compared to explore the inhibitory potential. Calculation of molecular binding energy (ΔG), inhibition constant (pKi), and prediction of pharmacokinetics and pharmacodynamics properties were performed. The molecular docking investigation of ABA with 11-HSD1, GFAT, PPAR-gamma, and SIRT6 revealed considerably low binding energy (ΔG from −8.1 to −7.3 Kcal/mol) and predicted inhibition constant (pKi from 6.01 to 5.21 µM). The ADMET study revealed that ABA is a promising drug candidate without any hazardous effect following all current drug-likeness guidelines such as Lipinski, Ghose, Veber, Egan, and Muegge.


2020 ◽  
Vol 3 (4) ◽  
pp. 989-1000
Author(s):  
Mustapha Abdullahi ◽  
Shola Elijah Adeniji

AbstractMolecular docking simulation of thirty-five (35) molecules of N-(2-phenoxy)ethyl imidazo[1,2-a]pyridine-3-carboxamide (IPA) with Mycobacterium tuberculosis target (DNA gyrase) was carried out so as to evaluate their theoretical binding affinities. The chemical structure of the molecules was accurately drawn using ChemDraw Ultra software, then optimized at density functional theory (DFT) using Becke’s three-parameter Lee–Yang–Parr hybrid functional (B3LYP/6-311**) basis set in a vacuum of Spartan 14 software. Subsequently, the docking operation was carried out using PyRx virtual screening software. Molecule 35 (M35) with the highest binding affinity of − 7.2 kcal/mol was selected as the lead molecule for structural modification which led to the development of four (4) newly hypothetical molecules D1, D2, D3 and D4. In addition, the D4 molecule with the highest binding affinity value of − 9.4 kcal/mol formed more H-bond interactions signifying better orientation of the ligand in the binding site compared to M35 and isoniazid standard drug. In-silico ADME and drug-likeness prediction of the molecules showed good pharmacokinetic properties having high gastrointestinal absorption, orally bioavailable, and less toxic. The outcome of the present research strengthens the relevance of these compounds as promising lead candidates for the treatment of multidrug-resistant tuberculosis which could help the medicinal chemists and pharmaceutical professionals in further designing and synthesis of more potent drug candidates. Moreover, the research also encouraged the in vivo and in vitro evaluation study for the proposed designed compounds to validate the computational findings.


BMC Chemistry ◽  
2022 ◽  
Vol 16 (1) ◽  
Author(s):  
Mona Fekadu ◽  
Digafie Zeleke ◽  
Bayan Abdi ◽  
Anuradha Guttula ◽  
Rajalakshmanan Eswaramoorthy ◽  
...  

Abstract Background Quinolines have demonstrated various biological activities such as antimalarial, antibacterial and anticancer. Hence, compounds with such scaffold have been used as lead in drug development. This project is, therefore, aimed to synthesis and evaluates some biological activities of quinoline analogs. Methods 2-Chloro-7-fluoroquinoline-3-carbaldehydes were synthesized by the application of Vilsmeier–Haack reaction. The chlorine in the fluoroquinoline-3-carbaldehyde was replaced with various nucleophiles. The aldehyde functional group was also converted to carboxylic acid and imine groups using oxidizing agent and various amines, respectively. The structures of the compounds synthesized were characterized by spectroscopic methods. Disc diffusion and DPPH assays were used to evaluate the antibacterial and antioxidant activities, respectively. The in silico molecular docking analysis of the synthesized compounds were done using AutoDock Vina against E. coli DNA Gyrase B and human topoisomerase IIα. The drug likeness properties were assessed using SwissADME and PreADMET. Results Nine novel quinoline derivatives were synthesized in good yields. The in vitro antibacterial activity of the synthesized compounds was beyond 9.3 mm inhibition zone (IZ). Compounds 4, 5, 6, 7, 8, 10, 15, and 16 exhibited activity against E. coli, P. aeruginosa, S. aureus and S. pyogenes with IZ ranging from 7.3 ± 0.67 to 15.3 ± 0.33 mm at 200 μg/mL. Compound 9 displayed IZ against three of the bacterial strains except S. aureus. The IC50 for the radical scavenging activity of the synthesized compounds were from 5.31 to 16.71 μg/mL. The binding affinities of the synthesized compounds were from − 6.1 to − 7.2 kcal/mol against E. coli DNA gyrase B and − 6.8 to − 7.4 kcal/mol against human topoisomerase IIα. All of the synthesized compounds obeyed Lipinski’s rule of five without violation. Conclusion Compounds 4, 5, 6, 7, 8, 10, 15, and 16 displayed activity against Gram positive and Gram negative bacterial strains indicating that these compounds might be used as broad spectrum bactericidal activity. Compound 8 (13.6 ± 0.22 mm) showed better IZ against P. aeruginosa compared with ciprofloxacin (10.0 ± 0.45 mm) demonstrating the potential of this compound as antibacterial agent against this strain. Compounds 5, 6, 7, 8, 9 and 10 showed comparable binding affinities in their in silico molecular docking analysis against E. coli DNA gyrase B. All of the synthesized compounds also obeyed Lipinski’s rule of five without violation which suggests these compounds as antibacterial agents for further study. Compounds 7 and 8 were proved to be a very potent radical scavenger with IC50 values of 5.31 and 5.41 μg/mL, respectively. Compound 5, 6, 8, 10 and 16 had comparable binding affinity against human topoisomerase IIα suggesting these compounds as a possible candidate for anticancer drugs.


2021 ◽  
Vol 12 (2) ◽  
pp. 1385-1396

Currently, the entire globe is under the deadliest pandemic of Covid-19 caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). At present, no specific treatment is available to combat COVID-19 infection. Euphorbia hirta (Euphorbiaceae) have been reported for a variety of biological activities, including antiviral. The present investigation aimed to identify potential phytoconstituents of the plant E. hirta from the category flavonoids and coumarins against the SARS-CoV-2 using in silico approach. The molecular docking studies were performed using two different targets of SARS-CoV-2, namely Main protease (Mpro; PDB ID: 6M2N) and RNA-dependent RNA polymerase (RdRp; PDB ID: 7BW4). Based on the molecular docking study in comparison with standard drug, four compounds, namely Euphrobianin, Quercetin, 3-o-alpha-rhamnoside, Isoquercitrin, and rutin, were screened against the target Mpro. Three phytoconstituents, euphorbianin, myricetin, and rutin, were screened against the target RdRp. In the in silico toxicity studies of screened phytoconstituents, except myrectin all were predicted safe. Results of euphorbianin and rutin were found more interesting as both compounds had high binding affinity against both targets. Finally, we want to conclude that euphrobianin, quercetin 3-o-alpha-rhamnoside, isoquercitrin, and rutin could be further explored rapidly as they may have the potential to fight against COVID-19.


Sign in / Sign up

Export Citation Format

Share Document