Nitromethane - Physical Properties, Thermodynamics, Kinetics Of Decomposition, And Utilization As Fuel

1958 ◽  
Vol 58 (4) ◽  
pp. 627-644 ◽  
Author(s):  
A. Makovky ◽  
L. Lenji
1994 ◽  
Vol 59 (9) ◽  
pp. 2029-2041
Author(s):  
Oldřich Pytela ◽  
Taťjana Nevěčná

The kinetics of decomposition of 1,3-bis(4-methylphenyl)triazene catalyzed with 13 substituted benzoic acids of various concentrations have been measured in 25 vol.% aqueous methanol at 25.0 °C. The rate constants observed (297 data) have be used as values of independent variable in a series of models of the catalyzed decomposition. For the catalytic particles were considered the undissociated acid, its conjugated base, and the proton in both the specific and general catalyses. Some models presumed formation of reactive or nonreactive complexes of the individual reactants. The substituent effect is described by the Hammett equation. The statistically best model in which the observed rate constant is a superposition of a term describing the dependence on proton concentration and a term describing the dependence on the product of concentrations of proton and conjugated base is valid with the presumption of complete proton transfer from the catalyst acid to substrate, which has been proved. The behaviour of 4-dimethylamino, 4-amino, and 3-amino derivatives is anomalous (lower catalytic activity as compared with benzoic acid). This supports the presumed participation of conjugated base in the title process.


2021 ◽  
Vol 329 ◽  
pp. 115569
Author(s):  
Rouzbeh Ramezani ◽  
Ida M. Bernhardsen ◽  
Renzo Di Felice ◽  
Hanna K. Knuutila

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ajibola B. Oyedeji ◽  
Olajide P. Sobukola ◽  
Ezekiel Green ◽  
Oluwafemi A. Adebo

AbstractThe physical properties and water absorption kinetics of three varieties of Mucuna beans (Mucuna pruriens, Mucuna rajada and Mucuna veracruz) were determined in this study. Physical properties including length, width, thickness, geometric mean diameter, sphericity, porosity, bulk density, area, volume and one thousand seed mass were calculated while hydration kinetics was studied by soaking Mucuna beans in water at 30 °C, 40 °C and 50 °C and measuring water uptake at 9 h interval. Peleg’s equation was used to model the hydration characteristics and Arrhenius equation was used to describe the effect of temperature on Peleg’s rate constant k1 and to obtain the activation energies for soaking. Significant variations were observed in almost all the physical properties of the different varieties, however, there were no significant differences (p < 0.05) in their thicknesses and bulk densities. The effectiveness of fit of Peleg’s model (R2) increased with increase in soaking temperature. Peleg’s rate constant k1 decreased with increase in soaking temperature while k2 increased with temperature increase. Activation energies of Mucuna pruriens, Mucuna rajada and Mucuna veracruz were 1613.24 kJ/mol, 747.95 kJ/mol and 2743.64 kJ/mol, respectively. This study provides useful information about the properties of three varieties of Mucuna beans that could be of importance to processors and engineers for process design and optimization.


1960 ◽  
Vol 33 (2) ◽  
pp. 335-341
Author(s):  
Walter Scheele ◽  
Karl-Heinz Hillmer

Abstract As a complement to earlier investigations, and in order to examine more closely the connection between the chemical kinetics and the changes with vulcanization time of the physical properties in the case of vulcanization reactions, we used thiuram vulcanizations as an example, and concerned ourselves with the dependence of stress values (moduli) at different degrees of elongation and different vulcanization temperatures. We found: 1. Stress values attain a limiting value, dependent on the degree of elongation, but independent of the vulcanization temperature at constant elongation. 2. The rise in stress values with the vulcanization time is characterized by an initial delay, which, however, is practically nonexistent at higher temperatures. 3. The kinetics of the increase in stress values with vulcanization time are both qualitatively and quantitatively in accord with the dependence of the reciprocal equilibrium swelling on the vulcanization time; both processes, after a retardation, go according to the first order law and at the same rate. 4. From the temperature dependence of the rate constants of reciprocal equilibrium swelling, as well as of the increase in stress, an activation energy of 22 kcal/mole can be calculated, in good agreement with the activation energy of dithiocarbamate formation in thiuram vulcanizations.


2009 ◽  
Vol 24 (9) ◽  
pp. 095019 ◽  
Author(s):  
Changgang Huang ◽  
Meili Wang ◽  
Quanlin Liu ◽  
Yongge Cao ◽  
Zhonghua Deng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document