Sediment trap fluxes and benthic recycling of organic carbon, polycyclic aromatic hydrocarbons, and polychlorobiphenyl congeners in Lake Superior

1991 ◽  
Vol 25 (3) ◽  
pp. 500-509 ◽  
Author(s):  
Joel E. Baker ◽  
Steven J. Eisenreich ◽  
Brian J. Eadie
2009 ◽  
Vol 43 (17) ◽  
pp. 2693-2699 ◽  
Author(s):  
Diana Guzmán-Torres ◽  
Arantza Eiguren-Fernández ◽  
Pablo Cicero-Fernández ◽  
Marisela Maubert-Franco ◽  
Armando Retama-Hernández ◽  
...  

1991 ◽  
Vol 23 (1-3) ◽  
pp. 427-436 ◽  
Author(s):  
Y. Shimizu ◽  
H. M. Liljestrand

A fluorescence quenching method was used to determine the sorption of polycyclic aromatic hydrocarbons (PAHs) onto natural solids in batch experiments. This method is based upon the observation that PAHs fluoresce in aqueous solution but not when associated with natural solids. It avoids problems of incomplete solid-liquid separation. As natural solids, eleven different USEPA soils and sediments were used. Anthracene and 2-aminoanthracene, which are respectively non-ionic and ionic PAHs, were chosen as sorbates. The fractional decrease in fluorescence intensity as a function of added natural solid concentration is referred to as Stem-Volmer plots. The plots were linear for all natural solids investigated. The conditional sorption coefficients (Ksc) at pH 6 through 8 and I=0.1 M were obtained as the slopes of the plots. While the Ksc values of anthracene were independent of pH, the values of 2-aminoanthracene decreased with increasing pH. The Ksc values of anthracene correlated well with the organic carbon content of natural solids. However, the values of 2-aminoanthracene did not depend on the content of organic carbon in natural solids. For 2-aminoanthracene, inorganic matrices of the natural solids may contribute to the sorption.


2020 ◽  
Author(s):  
Sampriti Chaudhuri ◽  
Gabriel Sigmund ◽  
Hary von Rautenkranz ◽  
Thorsten Hueffer ◽  
Thilo Hofmann

<p>Biochar is a versatile soil additive and CO<sub>2</sub> neutral or negative “green” sorbent. Biochar can improve the soil quality, water retention capacity, and is effective in binding contaminants. Previous studies showed that biochar is a suitable remediation option at sites with residual contamination and that it is particularly favorable in immobilizing organic polycyclic aromatic hydrocarbons (PAHs) and cadmium. To achieve remediation goals, however, careful assessment of the soil geochemistry (pH, background ions, organic carbon content), the nature of the contaminant, and the application rate need to be carried out. We have screened the sorption affinity of 11 different types of biochars and 2 activated carbons for selected heavy metals and ionizable and non-ionizable PAHs. The biochars differed in the starting feedstock material (rice husk, wheat straw pellets, mixed softwood pellets, oil seed rape straw, miscanthus straw pellets), temperature of production (550°C, 700°C), and elemental composition. The target contaminants included acenaphthene, dibenzofuran, carbazole, dibenzothiophene, 2-hydroxybiphenyl, cadmium, and mercury. The sorption of the organic contaminants was driven by the carbon content, specific surface area, and aromatic nature of the biochars. Sorption of cadmium was higher onto biochars with greater inorganic fractions, whereas for mercury no specific trends could be observed. Based on the results of the initial screening, a novel approach to statistically design experiments using the Box-Behnken model was employed for selected biochars. Using this method, experiments were conducted to systematically investigate the influence of four factors (pH, dissolved organic carbon, ionic strength and contaminant concentration) on sorption at three different levels (-1, 0, +1). The results from the surface response modeling approach provides fundamental new insight into the applicability of these biochars at contaminated sites and can help identify scenarios favorable for remediation with biochar. Our results will help in the development of a remediation strategy with an overall low environmental footprint for contaminated soils.</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Essam Nasher ◽  
Lee Yook Heng ◽  
Zuriati Zakaria ◽  
Salmijah Surif

This paper reports the levels of polycyclic aromatic hydrocarbons (PAHs) in the water around the Island and their probable sources. Water samples were collected from four jetties and three marine fish farms around the main Langkawi Island and analysed for 18 polycyclic aromatic hydrocarbons (PAHs) in December 2010. The total PAH concentrations ranged from 6.1 ± 0.43 to 46 ± 0.42 μgL−1, which exceed the maximum admissible concentrations of PAHs (0.20 μgL−1) for the water standard of European Union. The calculated diagnostic benzo[a]anthracene : benzo[a]anthracene + chrysene ratio of between 0.52 and 1.0 suggests that the sources of PAHs at the majority of the stations studied are derived primarily from pyrogenic sources, from incomplete fuel combustion of the boats and vehicle engines, with lesser amounts of PAHs contributed from petrogenic sources. Some stations displayed mixed sources. A significant positive correlation was found between total organic carbon (TOC) and the concentrations of the high-molecular-weight PAHs (r2=0.86,P<0.05), which suggests significant secondary sources of PAHs, such as those from atmospheric deposition.


Sign in / Sign up

Export Citation Format

Share Document