National-Scale, Field-Based Evaluation of the Biota−Sediment Accumulation Factor Model

2001 ◽  
Vol 35 (9) ◽  
pp. 1709-1715 ◽  
Author(s):  
Charles S. Wong ◽  
Paul D. Capel ◽  
Lisa H. Nowell
2016 ◽  
Vol 17 (2) ◽  
pp. 525-535 ◽  
Author(s):  
Muhammad Aamir ◽  
Sardar Khan ◽  
Mengling Tang ◽  
Zahir Qamar ◽  
Anwarzeb Khan ◽  
...  

Toxics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 197
Author(s):  
Laura Marziali ◽  
Claudio Roscioli ◽  
Lucia Valsecchi

Riverine sediments are important sites of mercury methylation and benthic invertebrates may be indicators of Hg exposure to higher organisms. From 2014 to 2018, sediments and invertebrates were collected along a mercury gradient in the Toce River (Northern Italy) and analyzed for THg and MeHg. Concentrations in invertebrates, separated according to taxon and to Functional Feeding Group, ranged from 20 to 253 µg kg−1 dry weight (d.w.) for THg, increasing from grazers (Leuctra, Baetis, Serratella) to predators (Perla). MeHg ranged from 3 to 88 µg kg−1 d.w. in biota, representing 6–53% of THg, while in sediments it was mostly below LOD (0.7 µg kg−1), accounting for ≤3.8% of THg. The Biota-Sediment Accumulation Factor (BSAF, ranging 0.2–4.6) showed an inverse relation to exposure concentrations (THg in sediments, ranging 0.014–0.403 µg kg−1 d.w.) and to organic carbon. THg in invertebrates (up to 73 µg kg−1 wet weight), i.e., at the basal levels of the aquatic trophic chain, exceeded the European Environmental Quality Standard for biota (20 µg kg−1 w.w.), posing potential risks for top predators. Concentrations in adult insects were close to those in aquatic stages, proving active mercury transfer even to terrestrial food chains.


2018 ◽  
Vol 12 (5) ◽  
pp. 17-22
Author(s):  
Mehdi Khoshnamvand ◽  
◽  
Almasieh Almasieh ◽  
Shahram Kaboodvandpour ◽  
◽  
...  

Background: Present study was conducted to measure the level of total mercury (tHg) in sediments, benthos and benthivorous fish (i.e., common carp) for determining Biota (Benthos)-Sediment Accumulation Factor (BSAF), as well as Biomagnification Factor (BMF) of tHg between two trophic levels of benthos and benthivorous fish caught from Sanandaj Gheshlagh Reservoir (SGR) in the west of Iran. Methods: Samples of sediments and benthos biomasses were collected from three sampling stations. Common carps were captured around the selected stations during July to December 2010. Results: Means accumulated tHg (±SE) in sediments, benthos masses and muscle tissue of common carp were 117.66±9.72, 94.3±5.02 and 233.21±20.67 ng g-1 dry weight, respectively. Means accumulated tHg in benthos masses and muscle tissue of the common carp during the studying months showed no significant differences (P>0.05), while it was significantly differed in sediment samples (P<0.05). Results showed that there were statistically significant differences between accumulated tHg between sediment and benthos mass samples collected from the study sites (P<0.05). Conclusion: During the study, all calculated BSAF measurements were less than one, indicating transmission of mercury from sediment to benthos was not considerable. However, mercury BMFs was higher than one, denoting mercury biomagnification occurred from the benthos trophic level to the higher trophic level (i.e., common carp) in study site. Hence, the health considerations have to be taken in to the account for consumption of fishery products of SGR.


2019 ◽  
pp. 10-13
Author(s):  
Miguel Vieira de Melo Netoc

Amazonian rainforest aquatic ecosystem is a very unique ecosystem in the Earth, which waters from the Amazon basin have distinct physicochemical and optical characteristics (black, clear and white). In this mini review paper, Amazon status of bioaccumulation and biomagnifications of Hg and MeHg is discussed. Emphasis has been given to understand the effect of BSAF on the aquatic trophic chain (plankton, macroinvertebrates). Keywords: Mercury; Methylmercury; Amazon


2021 ◽  
Author(s):  
Ahmed Helmy Hassan Abouelezz

One of the pollutants that affects the coastal environment of Qatar is the vast expanse of oil residue ‘tarmats’ deposited on its beaches. The current study is aimed at gauging the concentration levels of total mercury (THg) in tarmat contaminated sediments and test their presence in selected coastal species. Three biota classes (Gastropoda, Bivalvia, and Crustacea) have been found on the tarmat of Ras Rakan and Umm Tais islands. Layers of hard asphalt-like tarmats and sediments samples were collected from 34 sites, along the coast of Qatar. Moreover, the Biota Sediment Accumulation Factor (BSAF) was calculated for THg through sentinel species. The mean concentrations of THg is 0.089 ± 0.02 μg.g-1. Compared to earlier studies, a relatively higher concentration of THg (0.463 μg.g-1) had been observed.


2017 ◽  
Vol 98 (8) ◽  
pp. 1907-1917 ◽  
Author(s):  
D. Komar ◽  
M. Dolenec ◽  
T. Dolenec ◽  
P. Vrhovnik ◽  
S. Lojen ◽  
...  

The presence of potentially toxic elements (PTE) was determined in different tissues of five selected marine organisms. The As, Cd, Cu, Mn, Mo, Ni, Pb and Zn concentrations were measured in the seagrass Cymodocea nodosa, the green alga Cladophora echinus, the red alga Gelidiella lubrica, the marine topshell Phorcus turbinatus and the littoral crab Carcinus aestuarii, as well as in seawater from Makirina Bay. The levels of As, Cd, Cu, Mn and Zn in the biota were found to exceed those in previously analysed sediments, indicating the bioaccumulation of these PTE. The biota-sediment accumulation factor (BSAF) and concentration factor (CF) varied among different organisms. As regards the five selected species, C. nodosa, C. echinus and G. lubrica proved to be the strongest accumulators of Mn, while P. turbinatus and C. aestuarii showed a high capacity to accumulate As, Cd, Cu and Zn. These species can be considered as good ecological indicators in the assessment of PTE pollution in marine littoral environments.


Sign in / Sign up

Export Citation Format

Share Document