scholarly journals Iron Blast Furnace Slag/Hydrated Lime Sorbents for Flue Gas Desulfurization

2004 ◽  
Vol 38 (16) ◽  
pp. 4451-4456 ◽  
Author(s):  
Chiung-Fang Liu ◽  
Shin-Min Shih
Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 382 ◽  
Author(s):  
Danying Gao ◽  
Zhenqing Zhang ◽  
Yang Meng ◽  
Jiyu Tang ◽  
Lin Yang

This work aims to investigate the effect of additional flue gas desulfurization gypsum (FGDG) on the properties of calcium sulfoaluminate cement (CSAC) blended with ground granulated blast furnace slag (GGBFS). The hydration rate, setting time, mechanical strength, pore structure and hydration products of the CSAC-GGBFS mixture containing FGDG were investigated systematically. The results show that the addition of FGDG promotes the hydration of the CSAC-GGBFS mixture and improves its mechanical strength; however, the FGDG content should not exceed 6%.


2008 ◽  
Vol 368-372 ◽  
pp. 1548-1551
Author(s):  
Guo Zhuo Gong ◽  
Shu Feng Ye ◽  
Feng Li ◽  
Yan Bin Cui ◽  
Ya Jun Tian ◽  
...  

A series of sorbents for SO2 in flue gas were prepared from hydrated lime and blast furnace slag using a factorial experiment design. It is found that the reaction between hydrated lime and blast furnace slag is fast. The reactivities of the as-prepared sorbents are higher than those of hydrated lime alone due to the formation of calcium silicate hydrates, and hence the utilization of hydrated lime as well as the Ca in the blast furnace slag is improved. Furthermore, the effects of preparation variables on the reactivity of the sorbents are also discussed.


2008 ◽  
Vol 47 (20) ◽  
pp. 7897-7902 ◽  
Author(s):  
Guozhuo Gong ◽  
Shufeng Ye ◽  
Yajun Tian ◽  
Yanbin Cui ◽  
Yunfa Chen

2011 ◽  
Vol 71-78 ◽  
pp. 2547-2550 ◽  
Author(s):  
Jian An Zhou ◽  
Sheng Jun Zhong ◽  
Jun Xiang Dang ◽  
Xu Li

SO2 Emission of sintering flue gas accounts for more than 70% of total SO2 emission of steel industry. The purpose of this paper was to use steel slag for desulfurization of sintering flue gas. Based on traditional circulating fluidized beds (CFB) for flue gas desulfurization (FGD), a new dry digestion CFB-FGD process was developed. The new process eliminated the traditional digestion procedure, and the functions of the reactor include preliminary dust collection, digestion and desulfurization. An pilot CFB installation with maximum flow rate of 8000 Nm3/h for flue gas desulfurization was established. The desulfurization effects of calces, converter slag and blast furnace slag were investigated under the following experimental conditions: temperature of inlet flue gas, 150 °C; temperature of outlet flue gas, 75 °C. Relative humidity, 13%; flue gas flow rate, 6800 Nm3/h; Ca/S ratio, 1.2. The results showed that all of the desulfurization agents had desulfurization capability and the desulfurization efficiency of calces was the best, followed by converter slag and blast furnace slag. The removal efficiency of steel slag ranged from 75% to 82%. Considering solid waste utilization, the application of steel slag in desulfurization using dry CFB has a promising future.


Author(s):  
Guo Zhuo Gong ◽  
Shu Feng Ye ◽  
Feng Li ◽  
Yan Bin Cui ◽  
Ya Jun Tian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document