Climate Change Impact of Biochar Cook Stoves in Western Kenyan Farm Households: System Dynamics Model Analysis

2011 ◽  
Vol 45 (8) ◽  
pp. 3687-3694 ◽  
Author(s):  
Thea Whitman ◽  
Charles F. Nicholson ◽  
Dorisel Torres ◽  
Johannes Lehmann
Urban Science ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 19
Author(s):  
Robert Dare

This article presents a customized system dynamics model to facilitate the informed development of policy for urban heat island mitigation within the context of future climate change, and with special emphasis on the reduction of heat-related mortality. The model incorporates a variety of components (incl.: the urban heat island effect; population dynamics; climate change impacts on temperature; and heat-related mortality) and is intended to provide urban planning and related professionals with: a facilitated means of understanding the risk of heat-related mortality within the urban heat island; and location-specific information to support the development of reasoned and targeted urban heat island mitigation policy.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1062 ◽  
Author(s):  
Sleemin Lee ◽  
Doosun Kang

The increasing frequency of extreme droughts and flash floods in recent years due to climate change has increased the interest in sustainable water use and efficient water resource management. Because the water resource sector is closely related to human activities and affected by interactions between the humanities and social sciences, there is a need for interdisciplinary research that can consider various elements, such as society and the economy. This study elucidates relationships within the social and hydrological systems and quantitatively analyzes the effects of a multi-purpose dam on the target society using a system dynamics model. A causal loop was used to identify causal relationships between the social and hydrological components of the target area, and a simulation model was constructed using the system dynamics technique. Additionally, climate change and socio-economic scenarios were applied to analyze the future effects of the multi-purpose dam on population change, the regional economy, water use, and flood damage prevention in the target area. The model proved reliable in predicting socio-economic changes in the target area and can be used to make decisions about efficient water resource management and water-resource-related facility planning.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1620 ◽  
Author(s):  
Milan Stojkovic ◽  
Slobodan P. Simonovic

Investigating the impact of climate change on the management of a complex multipurpose water system is a critical issue. The presented study focuses on different steps of the climate change impact analysis process: (i) Use of three regional climate models (RCMs), (ii) use of four bias correction methods (BCMs), (iii) use of three concentration scenarios (CSs), (iv) use of two model averaging procedures, (v) use of the hydrological model and (vi) use of the system dynamics simulation model (SDSM). The analyses are performed for a future period, from 2006 to 2055 and the reference period, from 1971 to 2000. As a case study area, the Lim water system in Serbia (southeast Europe) is used. The Lim river system consists of four hydraulically connected reservoirs (Uvac, Kokin Brod, Radojnja, Potpec) with a primary purpose of hydropower generation. The results of the climate change impact analyses indicate change in the future hydropower generation at the annual level from −3.5% to +17.9%. The change has a seasonal variation with an increase for the winter season up to +20.3% and decrease for the summer season up to −33.6%. Furthermore, the study analyzes the uncertainty in the SDSM outputs introduced by different steps of the modelling process. The most dominant source of uncertainty in power production is the choice of BCMs (54%), followed by the selection of RCMs (41%). The least significant source of uncertainty is the choice of CSs (6%). The uncertainty in the inflows and outflows is equally dominated by the choice of BCM (49%) and RCM (45%).


Energy ◽  
2016 ◽  
Vol 110 ◽  
pp. 85-94 ◽  
Author(s):  
Jelena Ziemele ◽  
Armands Gravelsins ◽  
Andra Blumberga ◽  
Girts Vigants ◽  
Dagnija Blumberga

Sign in / Sign up

Export Citation Format

Share Document