Mercury Distribution across 14 U.S. Forests. Part II: Patterns of Methyl Mercury Concentrations and Areal Mass of Total and Methyl Mercury

2012 ◽  
Vol 46 (11) ◽  
pp. 5921-5930 ◽  
Author(s):  
Daniel Obrist
2017 ◽  
Vol 223 ◽  
pp. 11-18 ◽  
Author(s):  
Xiaohang Xu ◽  
Bo Meng ◽  
Chao Zhang ◽  
Xinbin Feng ◽  
Chunhao Gu ◽  
...  

Teratology ◽  
1983 ◽  
Vol 28 (3) ◽  
pp. 375-387 ◽  
Author(s):  
Yigal Greener ◽  
Joseph A. Kochen

2003 ◽  
Vol 107 ◽  
pp. 509-512 ◽  
Author(s):  
E. Garcia ◽  
J. Laroulandie ◽  
M. Amyot ◽  
X. R. Saint-Simon

1994 ◽  
Vol 30 (10) ◽  
pp. 213-219 ◽  
Author(s):  
Hendrik Pieters ◽  
Victor Geuke

Samples of yellow eel from various locations in the Dutch Rhine area have been analyzed for trend monitoring of mercury since 1977. In the western Rhine delta mercury levels in eels have hardly changed since the seventies, whereas in the eastern part of the Dutch Rhine area a considerable decrease of mercury concentrations in eel has occurred. Because of continuous sedimentation of contaminated suspended matter transported from upstream regions, accumulation rates and concentrations of mercury in eel in the western Rhine delta remained at a relatively high level. Analyses of methyl mercury in biota have been performed to elucidate the role of methyl mercury in the mercury contamination of the Dutch Rhine ecosystem. Low percentages of methyl mercury were observed in zooplankton (3 to 35%). In benthic organisms (mussels) percentages of methyl mercury ranged from 30 to 57%, while in fish species and liver of aquatic top predator birds almost all the mercury was present in the form of methyl mercury (> 80%). During the period 1970-1990 mercury concentrations of suspended matter in the eastern Rhine delta have drastically decreased. These concentrations seemed to be highly correlated with mercury concentrations of eel (R = 0.84). The consequences of this relation are discussed.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3119
Author(s):  
Yinjiao Su ◽  
Xuan Liu ◽  
Yang Teng ◽  
Kai Zhang

Mercury (Hg) is a toxic trace element emitted from coal conversion and utilization. Samples with different coal ranks and gangue from Ningwu Coalfield are selected and investigated in this study. For understanding dependence of mercury distribution characteristics on coalification degree, Pearson regression analysis coupled with Spearman rank correlation is employed to explore the relationship between mercury and sulfur, mercury and ash in coal, and sequential chemical extraction method is adopted to recognize the Hg speciation in the samples of coal and gangue. The measured results show that Hg is positively related to total sulfur content in coal and the affinity of Hg to different sulfur forms varies with the coalification degree. Organic sulfur has the biggest impact on Hg in peat, which becomes weak with increasing the coalification degree from lignite to bituminous coal. Sulfate sulfur is only related to Hg in peat or lignite as little content in coal. However, the Pearson linear correlation coefficients of Hg and pyritic sulfur are relatively high with 0.479 for lignite, 0.709 for sub-bituminous coal and 0.887 for bituminous coal. Hg is also related to ash content in coal, whose Pearson linear correlation coefficients are 0.504, 0.774 and 0.827 respectively, in lignite, sub-bituminous coal and bituminous coal. Furthermore, Hg distribution is directly depended on own speciation in coal. The total proportion of F2 + F3 + F4 is increased from 41.5% in peat to 87.4% in bituminous coal, but the average proportion of F5 is decreased from 56.8% in peat to 12.4% in bituminous coal. The above findings imply that both Hg and sulfur enrich in coal largely due to the migration from organic state to inorganic state with the increase of coalification degree in Ningwu Coalfield.


Sign in / Sign up

Export Citation Format

Share Document